Yang-Baxter Graphs#
- class sage.combinat.yang_baxter_graph.SwapIncreasingOperator(i)#
- class sage.combinat.yang_baxter_graph.SwapOperator(i)#
Bases:
sage.structure.sage_object.SageObject
The operator that swaps the items in positions
i
andi+1
.EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3 == loads(dumps(s3)) True
- position()#
self
is the operator that swaps positionsi
andi+1
. This method returnsi
.EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3.position() 3
- sage.combinat.yang_baxter_graph.YangBaxterGraph(partition=None, root=None, operators=None)#
Construct the Yang-Baxter graph from
root
by repeated application ofoperators
, or the Yang-Baxter graph associated topartition
.INPUT:
The user needs to provide either
partition
or bothroot
andoperators
, wherepartition
– a partition of a positive integerroot
– the root vertexoperator
- a function that maps vertices \(u\) to a list of tuples of the form \((v, l)\) where \(v\) is a successor of \(u\) and \(l\) is the label of the edge from \(u\) to \(v\).
OUTPUT:
Either:
YangBaxterGraph_partition
- if partition is definedYangBaxterGraph_generic
- if partition isNone
EXAMPLES:
The Yang-Baxter graph defined by a partition \([p_1,\dots,p_k]\) is the labelled directed graph with vertex set obtained by bubble-sorting \((p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)\); there is an arrow from \(u\) to \(v\) labelled by \(i\) if \(v\) is obtained by swapping the \(i\)-th and \((i+1)\)-th elements of \(u\). For example, if the partition is \([3,1]\), then we begin with \((0,2,1,0)\) and generate all tuples obtained from it by swapping two adjacent entries if they are increasing:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: bubbleswaps = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=bubbleswaps); Y Yang-Baxter graph with root vertex (0, 2, 1, 0) sage: Y.vertices(sort=True) [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]
The
partition
keyword is a shorthand for the above construction:sage: Y = YangBaxterGraph(partition=[3,1]); Y Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0) sage: Y.vertices(sort=True) [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]
The permutahedron can be realized as a Yang-Baxter graph:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: swappers = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(1,2,3,4), operators=swappers); Y Yang-Baxter graph with root vertex (1, 2, 3, 4) sage: Y.plot() Graphics object consisting of 97 graphics primitives
The Cayley graph of a finite group can be realized as a Yang-Baxter graph:
sage: def left_multiplication_by(g): ....: return lambda h : h*g sage: G = CyclicPermutationGroup(4) sage: operators = [ left_multiplication_by(gen) for gen in G.gens() ] sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y Yang-Baxter graph with root vertex () sage: Y.plot(edge_labels=False) Graphics object consisting of 9 graphics primitives sage: G = SymmetricGroup(4) sage: operators = [left_multiplication_by(gen) for gen in G.gens()] sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y Yang-Baxter graph with root vertex () sage: Y.plot(edge_labels=False) Graphics object consisting of 96 graphics primitives
AUTHORS:
Franco Saliola (2009-04-23)
- class sage.combinat.yang_baxter_graph.YangBaxterGraph_generic(root, operators)#
Bases:
sage.structure.sage_object.SageObject
A class to model the Yang-Baxter graph defined by
root
andoperators
.INPUT:
root
– the root vertex of the graphoperators
– a list of callables that map vertices to (new) vertices.
Note
This is a lazy implementation: the digraph is only computed when it is needed.
EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops); Y Yang-Baxter graph with root vertex (1, 0, 2, 1, 0) sage: loads(dumps(Y)) == Y True
AUTHORS:
Franco Saliola (2009-04-23)
- edges()#
Return the (labelled) edges of
self
.EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)]
- plot(*args, **kwds)#
Plot
self
as a digraph.EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.plot() Graphics object consisting of 16 graphics primitives sage: Y.plot(edge_labels=False) Graphics object consisting of 11 graphics primitives
- relabel_edges(edge_dict, inplace=True)#
Relabel the edges of
self
.INPUT:
edge_dict
– a dictionary keyed by the (unlabelled) edges.
EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_op(op, u): ....: i = op.position() ....: return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)] sage: d = {((0,2,1,0),(2,0,1,0)):17, ((2,0,1,0),(2,1,0,0)):27} sage: Y.relabel_edges(d, inplace=False).edges() [((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)] sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)] sage: Y.relabel_edges(d, inplace=True) sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)]
- relabel_vertices(v, relabel_operator, inplace=True)#
Relabel the vertices
u
ofself
by the object obtained fromu
by applying therelabel_operator
tov
along a path fromself.root()
tou
.Note that the
self.root()
is paired withv
.INPUT:
v
– tuple, Permutation, …inplace
– ifTrue
, modifiesself
; otherwise returns a modified copy ofself
.
EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_op(op, u): ....: i = op.position() ....: return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: d = Y.relabel_vertices((1,2,3,4), relabel_op, inplace=False); d Yang-Baxter graph with root vertex (1, 2, 3, 4) sage: Y.vertices(sort=True) [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)] sage: e = Y.relabel_vertices((1,2,3,4), relabel_op); e sage: Y.vertices(sort=True) [(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 1, 4)]
- root()#
Return the root vertex of
self
.If
self
is the Yang-Baxter graph of the partition \([p_1,p_2,\dots,p_k]\), then this is the vertex \((p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)\).EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.root() (1, 0, 2, 1, 0) sage: Y = YangBaxterGraph(root=(0,1,0,2,1,0), operators=ops) sage: Y.root() (0, 1, 0, 2, 1, 0) sage: Y = YangBaxterGraph(root=(1,0,3,2,1,0), operators=ops) sage: Y.root() (1, 0, 3, 2, 1, 0) sage: Y = YangBaxterGraph(partition=[3,2]) sage: Y.root() (1, 0, 2, 1, 0)
- successors(v)#
Return the successors of the vertex
v
.EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.successors(Y.root()) [(1, 2, 0, 1, 0)] sage: sorted(Y.successors((1, 2, 0, 1, 0))) [(1, 2, 1, 0, 0), (2, 1, 0, 1, 0)]
- vertex_relabelling_dict(v, relabel_operator)#
Return a dictionary pairing vertices
u
ofself
with the object obtained fromv
by applying therelabel_operator
along a path from the root tou
.Note that the root is paired with
v
.INPUT:
v
– an objectrelabel_operator
– function mapping a vertex and a label to the image of the vertex
OUTPUT:
dictionary pairing vertices with the corresponding image of
v
EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_operator(op, u): ....: i = op.position() ....: return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: Y.vertex_relabelling_dict((1,2,3,4), relabel_operator) {(0, 2, 1, 0): (1, 2, 3, 4), (2, 0, 1, 0): (2, 1, 3, 4), (2, 1, 0, 0): (2, 3, 1, 4)}
- vertices(sort=False)#
Return the vertices of
self
.INPUT:
sort
– boolean (defaultFalse
) whether to sort the vertices
EXAMPLES:
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: Y.vertices(sort=True) [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]
- class sage.combinat.yang_baxter_graph.YangBaxterGraph_partition(partition)#
Bases:
sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
A class to model the Yang-Baxter graph of a partition.
The Yang-Baxter graph defined by a partition \([p_1,\dots,p_k]\) is the labelled directed graph with vertex set obtained by bubble-sorting \((p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)\); there is an arrow from \(u\) to \(v\) labelled by \(i\) if \(v\) is obtained by swapping the \(i\)-th and \((i+1)\)-th elements of \(u\).
Note
This is a lazy implementation: the digraph is only computed when it is needed.
EXAMPLES:
sage: Y = YangBaxterGraph(partition=[3,2,1]); Y Yang-Baxter graph of [3, 2, 1], with top vertex (0, 1, 0, 2, 1, 0) sage: loads(dumps(Y)) == Y True
AUTHORS:
Franco Saliola (2009-04-23)
- relabel_vertices(v, inplace=True)#
Relabel the vertices of
self
with the object obtained fromv
by applying the transpositions corresponding to the edge labels along some path from the root to the vertex.INPUT:
v
– tuple, Permutation, …inplace
– ifTrue
, modifiesself
; otherwise returns a modified copy ofself
.
EXAMPLES:
sage: Y = YangBaxterGraph(partition=[3,1]); Y Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0) sage: d = Y.relabel_vertices((1,2,3,4), inplace=False); d Digraph on 3 vertices sage: Y.vertices(sort=True) [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)] sage: e = Y.relabel_vertices((1,2,3,4)); e sage: Y.vertices(sort=True) [(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 1, 4)]
- vertex_relabelling_dict(v)#
Return a dictionary pairing vertices
u
ofself
with the object obtained fromv
by applying transpositions corresponding to the edges labels along a path from the root tou
.Note that the root is paired with
v
.INPUT:
v
– an object
OUTPUT:
dictionary pairing vertices with the corresponding image of
v
EXAMPLES:
sage: Y = YangBaxterGraph(partition=[3,1]) sage: Y.vertex_relabelling_dict((1,2,3,4)) {(0, 2, 1, 0): (1, 2, 3, 4), (2, 0, 1, 0): (2, 1, 3, 4), (2, 1, 0, 0): (2, 3, 1, 4)} sage: Y.vertex_relabelling_dict((4,3,2,1)) {(0, 2, 1, 0): (4, 3, 2, 1), (2, 0, 1, 0): (3, 4, 2, 1), (2, 1, 0, 0): (3, 2, 4, 1)}