Crystals of Generalized Young Walls#
AUTHORS:
Lucas David-Roesler: Initial version
Ben Salisbury: Initial version
Travis Scrimshaw: Initial version
Generalized Young walls are certain generalizations of Young tableaux introduced in [KS2010] and designed to be a realization of the crystals \(\mathcal{B}(\infty)\) and \(\mathcal{B}(\lambda)\) in type \(A_n^{(1)}\).
REFERENCES:
- class sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWalls(n, La)#
Bases:
sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls
The crystal \(\mathcal{Y}(\lambda)\) of generalized Young walls of the given type with highest weight \(\lambda\).
These were characterized in Theorem 4.1 of [KS2010]. See
GeneralizedYoungWall.in_highest_weight_crystal()
.INPUT:
n
– type \(A_n^{(1)}\)weight
– dominant integral weight
EXAMPLES:
sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights()[1] sage: YLa = crystals.GeneralizedYoungWalls(3,La) sage: y = YLa([[0],[1,0,3,2,1],[2,1,0],[3]]) sage: y.pp() 3| 0|1|2| 1|2|3|0|1| 0| sage: y.weight() -Lambda[0] + Lambda[2] + Lambda[3] - 3*delta sage: y.in_highest_weight_crystal(La) True sage: y.f(1) [[0], [1, 0, 3, 2, 1], [2, 1, 0], [3], [], [1]] sage: y.f(1).f(1) sage: yy = crystals.infinity.GeneralizedYoungWalls(3)([[0], [1, 0, 3, 2, 1], [2, 1, 0], [3], [], [1]]) sage: yy.f(1) [[0], [1, 0, 3, 2, 1], [2, 1, 0], [3], [], [1], [], [], [], [1]] sage: yyy = yy.f(1) sage: yyy.in_highest_weight_crystal(La) False sage: LS = crystals.LSPaths(['A',3,1],[1,0,0,0]) sage: C = LS.subcrystal(max_depth=4) sage: G = LS.digraph(subset=C) sage: P = RootSystem(['A',3,1]).weight_lattice(extended=True) sage: La = P.fundamental_weights() sage: YW = crystals.GeneralizedYoungWalls(3,La[0]) sage: CW = YW.subcrystal(max_depth=4) sage: GW = YW.digraph(subset=CW) sage: GW.is_isomorphic(G,edge_labels=True) True
To display the crystal down to a specified depth:
sage: S = YLa.subcrystal(max_depth=4) sage: G = YLa.digraph(subset=S) sage: view(G) # not tested
- Element#
- class sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement(parent, data)#
Bases:
sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
Element of the highest weight crystal of generalized Young walls.
- e(i)#
Compute the action of \(e_i\) restricted to the highest weight crystal.
EXAMPLES:
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()[1] sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]]) sage: hwy.e(1) [[], [1, 0], [2]] sage: hwy.e(2) sage: hwy.e(3)
- f(i)#
Compute the action of \(f_i\) restricted to the highest weight crystal.
EXAMPLES:
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()[1] sage: GYW = crystals.infinity.GeneralizedYoungWalls(2) sage: y = GYW([[],[1,0],[2,1]]) sage: y.f(1) [[], [1, 0], [2, 1], [], [1]] sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]]) sage: hwy.f(1)
- phi(i)#
Return the value \(\varepsilon_i(Y) + \langle h_i, \mathrm{wt}(Y)\rangle\), where \(h_i\) is the \(i\)-th simple coroot and \(Y\) is
self
.EXAMPLES:
sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights() sage: y = crystals.GeneralizedYoungWalls(3,La[0])([]) sage: y.phi(1) 0 sage: y.phi(2) 0
- weight()#
Return the weight of
self
in the highest weight crystal as an element of the weight lattice \(\bigoplus_{i=0}^n \ZZ \Lambda_i\).EXAMPLES:
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()[1] sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]]) sage: hwy.weight() Lambda[0] - Lambda[1] + Lambda[2] - delta
- class sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall(parent, data)#
Bases:
sage.combinat.combinat.CombinatorialElement
A generalized Young wall.
For more information, see
InfinityCrystalOfGeneralizedYoungWalls
.EXAMPLES:
sage: Y = crystals.infinity.GeneralizedYoungWalls(4) sage: mg = Y.module_generators[0]; mg.pp() 0 sage: mg.f_string([1,2,0,1]).pp() 1|2| 0|1| |
- Epsilon()#
Return \(\sum_{i=0}^n \varepsilon_i(Y) \Lambda_i\) where \(Y\) is
self
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,1,0,3,2],[0],[],[2]]) sage: y.Epsilon() Lambda[0] + 3*Lambda[2]
- Phi()#
Return \(\sum_{i=0}^n \varphi_i(Y) \Lambda_i\) where \(Y\) is
self
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,1,0,3,2],[0],[],[2]]) sage: y.Phi() -Lambda[0] + 3*Lambda[1] - Lambda[2] + 3*Lambda[3] sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.Phi() 2*Lambda[0] + Lambda[1] - Lambda[2] + Lambda[3]
- a(i, k)#
Return the number \(a_i(k)\) of \(i\)-colored boxes in the
k
-th column ofself
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,1,0,3,2],[0],[],[2]]) sage: y.a(1,2) 1 sage: y.a(0,2) 1 sage: y.a(3,2) 0
- column(k)#
Return the list of boxes from the
k
-th column ofself
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,1,0,3,2],[0],[],[2]]) sage: y.column(2) [None, 0, 1, 2, None, None, None] sage: hw = crystals.infinity.GeneralizedYoungWalls(5)([]) sage: hw.column(1) []
- content()#
Return total number of blocks in
self
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],[1]]) sage: y.content() 8 sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.content() 13
- e(i)#
Return the application of the Kashiwara raising operator \(e_i\) on
self
.This will remove the \(i\)-colored box corresponding to the rightmost \(+\) in
self.signature(i)
.EXAMPLES:
sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.e(2) [[], [1, 0, 3, 2], [2, 1], [3, 2, 1, 0, 3, 2]] sage: _.e(2) [[], [1, 0, 3], [2, 1], [3, 2, 1, 0, 3, 2]] sage: _.e(2) [[], [1, 0, 3], [2, 1], [3, 2, 1, 0, 3]] sage: _.e(2)
- epsilon(i)#
Return the number of \(i\)-colored arrows in the \(i\)-string above
self
in the crystal graph.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: y.epsilon(1) 0 sage: y.epsilon(2) 3 sage: y.epsilon(0) 0
- f(i)#
Return the application of the Kashiwara lowering operator \(f_i\) on
self
.This will add an \(i\)-colored colored box to the site corresponding to the leftmost plus in
self.signature(i)
.EXAMPLES:
sage: hw = crystals.infinity.GeneralizedYoungWalls(2)([]) sage: hw.f(1) [[], [1]] sage: _.f(2) [[], [1], [2]] sage: _.f(0) [[], [1, 0], [2]] sage: _.f(0) [[0], [1, 0], [2]]
- generate_signature(i)#
The \(i\)-signature of
self
(with whitespace where cancellation occurs) together with the unreduced sequence from \(\{+,-\}\). The result also records to the row and column position of the sign.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],[1]]) sage: y.generate_signature(1) ([['+', 2, 5], ['-', 4, 1]], ' ')
- in_highest_weight_crystal(La)#
Return a boolean indicating if the generalized Young wall element is in the highest weight crystal cut out by the given highest weight
La
.By Theorem 4.1 of [KS2010], a generalized Young wall \(Y\) represents a vertex in the highest weight crystal \(Y(\lambda)\), with \(\lambda = \Lambda_{i_1} + \Lambda_{i_2} + \cdots + \Lambda_{i_\ell}\) a dominant integral weight of level \(\ell > 0\), if it satisfies the following condition. For each positive integer \(k\), if there exists \(j \in I\) such that \(a_j(k) - a_{j-1}(k) > 0\), then for some \(p = 1, \ldots, \ell\),
\[j + k \equiv i_p + 1 \bmod n+1 \text{ and } a_j(k) - a_{j-1}(k) \le \lambda(h_{i_p}),\]where \(\{h_0, h_1, \ldots, h_n\}\) is the set of simple coroots attached to \(A_n^{(1)}\).
EXAMPLES:
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()[1] sage: GYW = crystals.infinity.GeneralizedYoungWalls(2) sage: y = GYW([[],[1,0],[2,1]]) sage: y.in_highest_weight_crystal(La) True sage: x = GYW([[],[1],[2],[],[],[2],[],[],[2]]) sage: x.in_highest_weight_crystal(La) False
- latex_large()#
Generate LaTeX code for
self
but the output is larger. Requires TikZ.EXAMPLES:
sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.latex_large() '\\begin{tikzpicture}[baseline=5,scale=.45] \n \\foreach \\x [count=\\s from 0] in \n{{},{1,0,3,2},{2,1},{3,2,1,0,3,2},{},{},{2}} \n{\\foreach \\y [count=\\t from 0] in \\x { \\node[font=\\scriptsize] at (-\\t,\\s) {$\\y$}; \n \\draw (-\\t+.5,\\s+.5) to (-\\t-.5,\\s+.5); \n \\draw (-\\t+.5,\\s-.5) to (-\\t-.5,\\s-.5); \n \\draw (-\\t-.5,\\s-.5) to (-\\t-.5,\\s+.5); } \n \\draw[-,thick] (.5,\\s+1) to (.5,-.5) to (-\\t-1,-.5); } \n \\end{tikzpicture} \n'
- number_of_parts()#
Return the value of \(\mathscr{N}\) on
self
.In [KLRS2016], the statistic \(\mathscr{N}\) was defined on elements in \(\mathcal{Y}(\infty)\) which counts how many parts are in the corresponding Kostant partition. Specifically, the computation of \(\mathscr{N}(Y)\) is done using the following algorithm:
If \(Y\) has no rows whose right-most box is colored \(n\) and such that the length of this row is a multiple of \(n+1\), then \(\mathscr{N}(Y)\) is the total number of distinct rows in \(Y\), not counting multiplicity.
Otherwise, search \(Y\) for the longest row such that the right-most box is colored \(n\) and such that the total number of boxes in the row is \(k(n+1)\) for some \(k\ge 1\). Replace this row by \(n+1\) distinct rows of length \(k\), reordering all rows, if necessary, so that the result is a proper wall. (Note that the resulting wall may no longer be reduced.) Repeat the search and replace process for all other rows of the above form for each \(k' < k\). Then \(\mathscr{N}(Y)\) is the number of distinct rows, not counting multiplicity, in the wall resulting from this process.
EXAMPLES:
sage: Y = crystals.infinity.GeneralizedYoungWalls(3) sage: y = Y([[0],[],[],[],[0],[],[],[],[0]]) sage: y.number_of_parts() 1 sage: Y = crystals.infinity.GeneralizedYoungWalls(3) sage: y = Y([[0,3,2],[1,0],[],[],[0,3],[1,0],[],[],[0]]) sage: y.number_of_parts() 4 sage: Y = crystals.infinity.GeneralizedYoungWalls(2) sage: y = Y([[0,2,1],[1,0],[2,1,0,2,1,0,2,1,0],[],[2,1,0,2,1,0]]) sage: y.number_of_parts() 8
- phi(i)#
Return the value \(\varepsilon_i(Y) + \langle h_i, \mathrm{wt}(Y)\rangle\), where \(h_i\) is the \(i\)-th simple coroot and \(Y\) is
self
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,1,0,3,2],[0],[],[2]]) sage: y.phi(1) 3 sage: y.phi(2) -1
- pp()#
Pretty print
self
.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0,2,1],[1,0,2,1,0],[],[0],[1,0,2],[],[],[1]]) sage: y.pp() 1| | | 2|0|1| 0| | 0|1|2|0|1| 1|2|0|
- raw_signature(i)#
Return the sequence from \(\{+,-\}\) obtained from all \(i\)-admissible slots and removable \(i\)-boxes without canceling any \((+,-)\)-pairs. The result also notes the row and column of the sign.
EXAMPLES:
sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.raw_signature(2) [['-', 3, 6], ['-', 1, 4], ['-', 6, 1]]
- signature(i)#
Return the \(i\)-signature of
self
.The signature is obtained by reading
self
in columns bottom to top starting from the left. Then add a \(-\) at every \(i\)-box which may be removed fromself
and still obtain a legal generalized Young wall, and add a \(+\) at each site for which an \(i\)-box may be added and still obtain a valid generalized Young wall. Then successively cancel any \((+,-)\)-pair to obtain a sequence of the form \(- \cdots -+ \cdots +\). This resulting sequence is the output.EXAMPLES:
sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],[1]]) sage: y.signature(1) '' sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.signature(2) '---'
- sum_of_weighted_row_lengths()#
Return the value of \(\mathscr{M}\) on
self
.Let \(\mathcal{Y}_0 \subset \mathcal{Y}(\infty)\) be the set of generalized Young walls which have no rows whose right-most box is colored \(n\). For \(Y \in \mathcal{Y}_0\),
\[\mathscr{M}(Y) = \sum_{i=1}^n (i+1)M_i(Y),\]where \(M_i(Y)\) is the number of nonempty rows in \(Y\) whose right-most box is colored \(i-1\).
EXAMPLES:
sage: Y = crystals.infinity.GeneralizedYoungWalls(2) sage: y = Y([[0,2,1,0,2],[1,0,2],[],[0,2],[1,0],[],[0],[1,0]]) sage: y.sum_of_weighted_row_lengths() 15
- weight(root_lattice=False)#
Return the weight of
self
.INPUT:
root_lattice
– boolean determining whether weight should appear in root lattice or not in extended affine weight lattice.
EXAMPLES:
sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,0,3,2],[],[],[2]]) sage: x.weight() 2*Lambda[0] + Lambda[1] - 4*Lambda[2] + Lambda[3] - 2*delta sage: x.weight(root_lattice=True) -2*alpha[0] - 3*alpha[1] - 5*alpha[2] - 3*alpha[3]
- class sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls(n, category)#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.parent.Parent
The crystal \(\mathcal{Y}(\infty)\) of generalized Young walls of type \(A_n^{(1)}\) as defined in [KS2010].
A generalized Young wall is a collection of boxes stacked on a fixed board, such that color of the box at the site located in the \(j\)-th row from the bottom and the \(i\)-th column from the right is \(j-1 \bmod n+1\). There are several growth conditions on elements in \(Y \in \mathcal{Y}(\infty)\):
Walls grow in rows from right to left. That is, for every box \(y\in Y\) that is not in the rightmost column, there must be a box immediately to the right of \(y\).
For all \(p>q\) such that \(p-q \equiv 0 \bmod n+1\), the \(p\)-th row has most as many boxes as the \(q\)-th row.
There does not exist a column in the wall such that if one \(i\)-colored box, for every \(i = 0,1,\ldots,n\), is removed from that column, then the result satisfies the above conditions.
There is a crystal structure on \(\mathcal{Y}(\infty)\) defined as follows. Define maps
\[e_i,\ f_i \colon \mathcal{Y}(\infty) \longrightarrow \mathcal{Y}(\infty) \sqcup \{0\}, \qquad \varepsilon_i,\ \varphi_i \colon \mathcal{Y}(\infty) \longrightarrow \ZZ, \qquad \mathrm{wt}\colon \mathcal{Y}(\infty) \longrightarrow \bigoplus_{i=0}^n \ZZ \Lambda_i \oplus \ZZ \delta,\]by
\[\mathrm{wt}(Y) = -\sum_{i=0}^n m_i(Y) \alpha_i,\]where \(m_i(Y)\) is the number of \(i\)-boxes in \(Y\), \(\varepsilon_i(Y)\) is the number of \(-\) in the \(i\)-signature of \(Y\), and
\[\varphi_i(Y) = \varepsilon_i(Y) + \langle h_i, \mathrm{wt}(Y) \rangle.\]See
GeneralizedYoungWall.e()
,GeneralizedYoungWall.f()
, andGeneralizedYoungWall.signature()
for more about \(e_i\), \(f_i\), and \(i\)-signatures.INPUT:
n
– type \(A_n^{(1)}\)
EXAMPLES:
sage: Yinf = crystals.infinity.GeneralizedYoungWalls(3) sage: y = Yinf([[0],[1,0,3,2],[],[3,2,1],[0],[1,0]]) sage: y.pp() 0|1| 0| 1|2|3| | 2|3|0|1| 0| sage: y.weight(root_lattice=True) -4*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3] sage: y.f(0) [[0], [1, 0, 3, 2], [], [3, 2, 1], [0], [1, 0], [], [], [0]] sage: y.e(0).pp() 0|1| | 1|2|3| | 2|3|0|1| 0|
To display the crystal down to depth 3:
sage: S = Yinf.subcrystal(max_depth=3) sage: G = Yinf.digraph(subset=S) # long time sage: view(G) # not tested
- Element#
alias of
GeneralizedYoungWall