Counting, generating, and manipulating non-negative integer matrices#
Counting, generating, and manipulating non-negative integer matrices with prescribed row sums and column sums.
AUTHORS:
Franco Saliola
- class sage.combinat.integer_matrices.IntegerMatrices(row_sums, column_sums)#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.parent.Parent
The class of non-negative integer matrices with prescribed row sums and column sums.
An integer matrix \(m\) with column sums \(c := (c_1,...,c_k)\) and row sums \(l := (l_1,...,l_n)\) where \(c_1+...+c_k\) is equal to \(l_1+...+l_n\), is a \(n \times k\) matrix \(m = (m_{i,j})\) such that \(m_{1,j}+\dots+m_{n,j} = c_j\), for all \(j\) and \(m_{i,1}+\dots+m_{i,k} = l_i\), for all \(i\).
EXAMPLES:
There are \(6\) integer matrices with row sums \([3,2,2]\) and column sums \([2,5]\):
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: IM = IntegerMatrices([3,2,2], [2,5]); IM Non-negative integer matrices with row sums [3, 2, 2] and column sums [2, 5] sage: IM.list() [ [2 1] [1 2] [1 2] [0 3] [0 3] [0 3] [0 2] [1 1] [0 2] [2 0] [1 1] [0 2] [0 2], [0 2], [1 1], [0 2], [1 1], [2 0] ] sage: IM.cardinality() 6
- cardinality()#
The number of integer matrices with the prescribed row sums and columns sums.
EXAMPLES:
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: IntegerMatrices([2,5], [3,2,2]).cardinality() 6 sage: IntegerMatrices([1,1,1,1,1], [1,1,1,1,1]).cardinality() 120 sage: IntegerMatrices([2,2,2,2], [2,2,2,2]).cardinality() 282 sage: IntegerMatrices([4], [3]).cardinality() 0 sage: len(IntegerMatrices([0,0], [0]).list()) 1
This method computes the cardinality using symmetric functions. Below are the same examples, but computed by generating the actual matrices:
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: len(IntegerMatrices([2,5], [3,2,2]).list()) 6 sage: len(IntegerMatrices([1,1,1,1,1], [1,1,1,1,1]).list()) 120 sage: len(IntegerMatrices([2,2,2,2], [2,2,2,2]).list()) 282 sage: len(IntegerMatrices([4], [3]).list()) 0 sage: len(IntegerMatrices([0], [0]).list()) 1
- column_sums()#
The column sums of the integer matrices in
self
.OUTPUT:
Composition
EXAMPLES:
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: IM = IntegerMatrices([3,2,2], [2,5]) sage: IM.column_sums() [2, 5]
- row_sums()#
The row sums of the integer matrices in
self
.OUTPUT:
Composition
EXAMPLES:
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: IM = IntegerMatrices([3,2,2], [2,5]) sage: IM.row_sums() [3, 2, 2]
- to_composition(x)#
The composition corresponding to the integer matrix.
This is the composition obtained by reading the entries of the matrix from left to right along each row, and reading the rows from top to bottom, ignore zeros.
INPUT:
x
– matrix
EXAMPLES:
sage: from sage.combinat.integer_matrices import IntegerMatrices sage: IM = IntegerMatrices([3,2,2], [2,5]); IM Non-negative integer matrices with row sums [3, 2, 2] and column sums [2, 5] sage: IM.list() [ [2 1] [1 2] [1 2] [0 3] [0 3] [0 3] [0 2] [1 1] [0 2] [2 0] [1 1] [0 2] [0 2], [0 2], [1 1], [0 2], [1 1], [2 0] ] sage: for m in IM: print(IM.to_composition(m)) [2, 1, 2, 2] [1, 2, 1, 1, 2] [1, 2, 2, 1, 1] [3, 2, 2] [3, 1, 1, 1, 1] [3, 2, 2]
- sage.combinat.integer_matrices.integer_matrices_generator(row_sums, column_sums)#
Recursively generate the integer matrices with the prescribed row sums and column sums.
INPUT:
row_sums
– list or tuplecolumn_sums
– list or tuple
OUTPUT:
an iterator producing a list of lists
EXAMPLES:
sage: from sage.combinat.integer_matrices import integer_matrices_generator sage: iter = integer_matrices_generator([3,2,2], [2,5]); iter <generator object ...integer_matrices_generator at ...> sage: for m in iter: print(m) [[2, 1], [0, 2], [0, 2]] [[1, 2], [1, 1], [0, 2]] [[1, 2], [0, 2], [1, 1]] [[0, 3], [2, 0], [0, 2]] [[0, 3], [1, 1], [1, 1]] [[0, 3], [0, 2], [2, 0]]