Finite lattices and semilattices#
This module implements finite (semi)lattices. It defines:
Construct a lattice. |
|
Construct a meet semi-lattice. |
|
Construct a join semi-lattice. |
|
A class for finite lattices. |
|
A class for finite meet semilattices. |
|
A class for finite join semilattices. |
List of (semi)lattice methods#
Meet and join
Return the meet of given elements. |
|
Return the join of given elements. |
|
Return the matrix of meets of all elements of the meet semi-lattice. |
|
Return the matrix of joins of all elements of the join semi-lattice. |
Properties of the lattice
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return the breadth of the lattice. |
Specific elements
Return elements covering the bottom element. |
|
Return elements covered by the top element. |
|
Return double irreducible elements. |
|
Return the join prime elements. |
|
Return the meet prime elements. |
|
Return the list of complements of an element, or the dictionary of complements for all elements. |
|
Return the pseudocomplement of an element. |
|
Return |
|
Return |
|
Return neutral elements of the lattice. |
|
Return the canonical joinands of an element. |
|
Return the canonical meetands of an element. |
Sublattices
Return sublattice generated by list of elements. |
|
Return meet-subsemilattice generated by list of elements. |
|
Return join-subsemilattice generated by list of elements. |
|
Return |
|
Return all sublattices of the lattice. |
|
Return the lattice of sublattices. |
|
Return an iterator over the sublattices isomorphic to given lattice. |
|
Return maximal sublattices of the lattice. |
|
Return the intersection of maximal sublattices of the lattice. |
|
Return the skeleton of the lattice. |
|
Return the sublattice of complemented neutral elements. |
|
Return the vertical decomposition of the lattice. |
Miscellaneous
Return the Möbius algebra of the lattice. |
|
Return the quantum Möbius algebra of the lattice. |
|
Return ordinal sum of lattices with top/bottom element unified. |
|
Return the lattice with Alan Day’s doubling construction of a subset. |
|
Return the adjunct with other lattice. |
|
Return the subdirect decomposition of the lattice. |
|
Return the congruence generated by lists of elements. |
|
Return the quotient lattice by a congruence. |
|
Return the lattice of congruences. |
- class sage.combinat.posets.lattices.FiniteJoinSemilattice(hasse_diagram, elements, category, facade, key)#
Bases:
sage.combinat.posets.posets.FinitePoset
We assume that the argument passed to FiniteJoinSemilattice is the poset of a join-semilattice (i.e. a poset with least upper bound for each pair of elements).
- Element#
alias of
sage.combinat.posets.elements.JoinSemilatticeElement
- coatoms()#
Return the list of co-atoms of this (semi)lattice.
A co-atom of a lattice is an element covered by the top element.
EXAMPLES:
sage: L = posets.DivisorLattice(60) sage: sorted(L.coatoms()) [12, 20, 30]
See also
Dual function:
atoms()
- join(x, y=None)#
Return the join of given elements in the lattice.
INPUT:
x, y
– two elements of the (semi)lattice ORx
– a list or tuple of elements
EXAMPLES:
sage: D = posets.DiamondPoset(5) sage: D.join(1, 2) 4 sage: D.join(1, 1) 1 sage: D.join(1, 4) 4 sage: D.join(1, 0) 1
Using list of elements as an argument. Join of empty list is the bottom element:
sage: B4=posets.BooleanLattice(4) sage: B4.join([2,4,8]) 14 sage: B4.join([]) 0
For non-facade lattices operator
+
works for join:sage: L = posets.PentagonPoset(facade=False) sage: L(1)+L(2) 4
See also
Dual function:
meet()
- join_matrix()#
Return a matrix whose
(i,j)
entry isk
, whereself.linear_extension()[k]
is the join (least upper bound) ofself.linear_extension()[i]
andself.linear_extension()[j]
.EXAMPLES:
sage: P = LatticePoset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False) sage: J = P.join_matrix(); J [0 1 2 3 4 5 6 7] [1 1 3 3 7 7 7 7] [2 3 2 3 4 6 6 7] [3 3 3 3 7 7 7 7] [4 7 4 7 4 7 7 7] [5 7 6 7 7 5 6 7] [6 7 6 7 7 6 6 7] [7 7 7 7 7 7 7 7] sage: J[P(4).vertex,P(3).vertex] == P(7).vertex True sage: J[P(5).vertex,P(2).vertex] == P(5).vertex True sage: J[P(5).vertex,P(2).vertex] == P(2).vertex False
- class sage.combinat.posets.lattices.FiniteLatticePoset(hasse_diagram, elements, category, facade, key)#
Bases:
sage.combinat.posets.lattices.FiniteMeetSemilattice
,sage.combinat.posets.lattices.FiniteJoinSemilattice
We assume that the argument passed to FiniteLatticePoset is the poset of a lattice (i.e. a poset with greatest lower bound and least upper bound for each pair of elements).
- Element#
- adjunct(other, a, b)#
Return the adjunct of the lattice by
other
on the pair \((a, b)\).It is assumed that \(a < b\) but \(b\) does not cover \(a\).
The adjunct of a lattice \(K\) to \(L\) with respect to pair \((a, b)\) of \(L\) is defined such that \(x < y\) if
\(x, y \in K\) and \(x < y\) in \(K\),
\(x, y \in L\) and \(x < y\) in \(L\),
\(x \in L\), \(y \in K\) and \(x \le a\) in \(L\), or
\(x \in K\), \(y \in L\) and \(b \le y\) in \(L\).
Informally this can be seen as attaching the lattice \(K\) to \(L\) as a new block between \(a\) and \(b\). Dismantlable lattices are exactly those that can be created from chains with this function.
Mathematically, it is only defined when \(L\) and \(K\) have no common element; here we force that by giving them different names in the resulting lattice.
EXAMPLES:
sage: Pnum = posets.PentagonPoset() sage: Palp = Pnum.relabel(lambda x: chr(ord('a')+x)) sage: PP = Pnum.adjunct(Palp, 0, 3) sage: PP.atoms() [(0, 1), (0, 2), (1, 'a')] sage: PP.coatoms() [(0, 3), (0, 1)]
- breadth(certificate=False)#
Return the breadth of the lattice.
The breadth of a lattice is the largest integer \(n\) such that any join of elements \(x_1, x_2, \ldots, x_{n+1}\) is join of a proper subset of \(x_i\).
This can be also characterized by sublattices: a lattice of breadth at least \(n\) contains a sublattice isomorphic to the Boolean lattice of \(2^n\) elements.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return the pair \((b, a)\) where \(b\) is the breadth and \(a\) is an antichain such that the join of \(a\) differs from the join of any proper subset of \(a\). Ifcertificate=False
return just the breadth.
EXAMPLES:
sage: D10 = posets.DiamondPoset(10) sage: D10.breadth() 2 sage: B3 = posets.BooleanLattice(3) sage: B3.breadth() 3 sage: B3.breadth(certificate=True) (3, [1, 2, 4])
ALGORITHM:
For a lattice to have breadth at least \(n\), it must have an \(n\)-element antichain \(A\) with join \(j\). Element \(j\) must cover at least \(n\) elements. There must also be \(n-2\) levels of elements between \(A\) and \(j\). So we start by searching elements that could be our \(j\) and then just check possible antichains \(A\).
Note
Prior to version 8.1 this function returned just an antichain with
certificate=True
.
- canonical_joinands(e)#
Return the canonical joinands of \(e\).
The canonical joinands of an element \(e\) in the lattice \(L\) is the subset \(S \subseteq L\) such that 1) the join of \(S\) is \(e\), and 2) if the join of some other subset \(S'\) of is also \(e\), then for every element \(s \in S\) there is an element \(s' \in S'\) such that \(s \le s'\).
Informally said this is the set of lowest possible elements with given join. It exists for every element if and only if the lattice is join-semidistributive. Canonical joinands are always join-irreducibles.
INPUT:
e
– an element of the lattice
OUTPUT:
canonical joinands as a list, if it exists; if not,
None
EXAMPLES:
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5], 4: [6], ....: 5: [7], 6: [7]}) sage: L.canonical_joinands(7) [3, 4] sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6], ....: 5: [6]}) sage: L.canonical_joinands(6) is None True
See also
- canonical_meetands(e)#
Return the canonical meetands of \(e\).
The canonical meetands of an element \(e\) in the lattice \(L\) is the subset \(S \subseteq L\) such that 1) the meet of \(S\) is \(e\), and 2) if the meet of some other subset \(S'\) of is also \(e\), then for every element \(s \in S\) there is an element \(s' \in S'\) such that \(s \ge s'\).
Informally said this is the set of greatest possible elements with given meet. It exists for every element if and only if the lattice is meet-semidistributive. Canonical meetands are always meet-irreducibles.
INPUT:
e
– an element of the lattice
OUTPUT:
canonical meetands as a list, if it exists; if not,
None
EXAMPLES:
sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5, 6], 4: [6], ....: 5: [7], 6: [7]}) sage: L.canonical_meetands(1) [5, 4] sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6], ....: 5: [6]}) sage: L.canonical_meetands(1) is None True
See also
- center()#
Return the center of the lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a center of the lattice. Actually it is a Boolean lattice.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [6, 7], 3: [8, 9, 7], ....: 4: [5, 6], 5: [8, 10], 6: [10], 7: [13, 11], ....: 8: [13, 12], 9: [11, 12], 10: [13], ....: 11: [14], 12: [14], 13: [14]}) sage: C = L.center(); C Finite lattice containing 4 elements sage: C.cover_relations() [[1, 2], [1, 12], [2, 14], [12, 14]] sage: L = posets.DivisorLattice(60) sage: sorted(L.center().list()) [1, 3, 4, 5, 12, 15, 20, 60]
See also
- complements(element=None)#
Return the list of complements of an element in the lattice, or the dictionary of complements for all elements.
Elements \(x\) and \(y\) are complements if their meet and join are respectively the bottom and the top element of the lattice.
INPUT:
element
– an element of the lattice whose complement is returned. IfNone
(default) then dictionary of complements for all elements having at least one complement is returned.
EXAMPLES:
sage: L = LatticePoset({0:['a','b','c'],'a':[1],'b':[1],'c':[1]}) sage: C = L.complements()
Let us check that ‘a’ and ‘b’ are complements of each other:
sage: 'a' in C['b'] True sage: 'b' in C['a'] True
Full list of complements:
sage: L.complements() # random order {0: [1], 1: [0], 'a': ['b', 'c'], 'b': ['c', 'a'], 'c': ['b', 'a']} sage: L = LatticePoset({0:[1,2],1:[3],2:[3],3:[4]}) sage: L.complements() # random order {0: [4], 4: [0]} sage: L.complements(1) []
See also
- congruence(S)#
Return the congruence generated by set of sets \(S\).
A congruence of a lattice is an equivalence relation \(\cong\) that is compatible with meet and join; i.e. if \(a_1 \cong a_2\) and \(b_1 \cong b_2\), then \((a_1 \\vee b_1) \cong (a_2 \\vee b_2)\) and \((a_1 \wedge b_1) \cong (a_2 \wedge b_2)\).
By the congruence generated by set of sets \(\{S_1, \ldots, S_n\}\) we mean the least congruence \(\cong\) such that for every \(x, y \in S_i\) for some \(i\) we have \(x \cong y\).
INPUT:
S
– a list of lists; list of element blocks that the congruence will contain
OUTPUT:
Congruence of the lattice as a
sage.combinat.set_partition.SetPartition
.EXAMPLES:
sage: L = posets.DivisorLattice(12) sage: cong = L.congruence([[1, 3]]) sage: sorted(sorted(c) for c in cong) [[1, 3], [2, 6], [4, 12]] sage: L.congruence([[1, 2], [6, 12]]) {{1, 2, 4}, {3, 6, 12}} sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]}) sage: L.congruence([[1, 2]]) {{1, 2}, {3, 4}, {5}} sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 4: [5], 5: [7, 8], ....: 6: [8], 3: [9], 7: [10], 8: [10], 9:[10]}) sage: cong = L.congruence([[1, 2]]) sage: cong[0] frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
See also
- congruences_lattice(labels='congruence')#
Return the lattice of congruences.
A congruence of a lattice is a partition of elements to classes compatible with both meet- and join-operation; see
congruence()
. Elements of the congruence lattice are congruences ordered by refinement; i.e. if every class of a congruence \(\Theta\) is contained in some class of \(\Phi\), then \(\Theta \le \Phi\) in the congruence lattice.INPUT:
labels
– a string; the type of elements in the resulting lattice
OUTPUT:
A distributive lattice.
If
labels='congruence'
, then elements of the result will be congruences given assage.combinat.set_partition.SetPartition
.If
labels='integers'
, result is a lattice on integers isomorphic to the congruence lattice.
EXAMPLES:
sage: N5 = posets.PentagonPoset() sage: CL = N5.congruences_lattice(); CL Finite lattice containing 5 elements sage: CL.atoms() [{{0}, {1}, {2, 3}, {4}}] sage: CL.coatoms() [{{0, 1}, {2, 3, 4}}, {{0, 2, 3}, {1, 4}}] sage: C4 = posets.ChainPoset(4) sage: CL = C4.congruences_lattice(labels='integer') sage: CL.is_isomorphic(posets.BooleanLattice(3)) True
- day_doubling(S)#
Return the lattice with Alan Day’s doubling construction of subset \(S\).
The subset \(S\) is assumed to be convex (i.e. if \(a, c \in S\) and \(a < b < c\) in the lattice, then \(b \in S\)) and connected (i.e. if \(a, b \in S\) then there is a chain \(a=e_1, e_2, \ldots, e_n=b\) such that \(e_i\) either covers or is covered by \(e_{i+1}\)).
Alan Day’s doubling construction is a specific extension of the lattice. Here we formulate it in a format more suitable for computation.
Let \(L\) be a lattice and \(S\) a convex subset of it. The resulting lattice \(L[S]\) has elements \((e, 0)\) for each \(e \in L\) and \((e, 1)\) for each \(e \in S\). If \(x \le y\) in \(L\), then in the new lattice we have
\((x, 0), (x, 1) \le (y, 0), (y, 1)\)
\((x, 0) \le (x, 1)\)
INPUT:
S
– a subset of the lattice
EXAMPLES:
sage: L = LatticePoset({1: ['a', 'b', 2], 'a': ['c'], 'b': ['c', 'd'], ....: 2: [3], 'c': [4], 'd': [4], 3: [4]}) sage: L2 = L.day_doubling(['a', 'b', 'c', 'd']); L2 Finite lattice containing 12 elements sage: set(L2.upper_covers((1, 0))) == set([(2, 0), ('a', 0), ('b', 0)]) True sage: set(L2.upper_covers(('b', 0))) == set([('d', 0), ('b', 1), ('c', 0)]) True
See also
- double_irreducibles()#
Return the list of double irreducible elements of this lattice.
A double irreducible element of a lattice is an element covering and covered by exactly one element. In other words it is neither a meet nor a join of any elements.
EXAMPLES:
sage: L = posets.DivisorLattice(12) sage: sorted(L.double_irreducibles()) [3, 4] sage: L = posets.BooleanLattice(3) sage: L.double_irreducibles() []
See also
- frattini_sublattice()#
Return the Frattini sublattice of the lattice.
The Frattini sublattice \(\Phi(L)\) is the intersection of all proper maximal sublattices of \(L\). It is also the set of “non-generators” - if the sublattice generated by set \(S\) of elements is whole lattice, then also \(S \setminus \Phi(L)\) generates whole lattice.
EXAMPLES:
sage: L = LatticePoset(( [], [[1,2],[1,17],[1,8],[2,3],[2,22], ....: [2,5],[2,7],[17,22],[17,13],[8,7], ....: [8,13],[3,16],[3,9],[22,16],[22,18], ....: [22,10],[5,18],[5,14],[7,9],[7,14], ....: [7,10],[13,10],[16,6],[16,19],[9,19], ....: [18,6],[18,33],[14,33],[10,19], ....: [10,33],[6,4],[19,4],[33,4]] )) sage: sorted(L.frattini_sublattice().list()) [1, 2, 4, 10, 19, 22, 33]
- is_atomic(certificate=False)#
Return
True
if the lattice is atomic, andFalse
otherwise.A lattice is atomic if every element can be written as a join of atoms.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, where \(e\) is a join-irreducible element that is not an atom. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3:[5], 4:[6], 5:[6]}) sage: L.is_atomic() True sage: L = LatticePoset({0: [1, 2], 1: [3], 2: [3], 3:[4]}) sage: L.is_atomic() False sage: L.is_atomic(certificate=True) (False, 4)
Note
See [EnumComb1], Section 3.3 for a discussion of atomic lattices.
See also
Dual property:
is_coatomic()
Stronger properties:
is_sectionally_complemented()
Mutually exclusive properties:
is_vertically_decomposable()
- is_coatomic(certificate=False)#
Return
True
if the lattice is coatomic, andFalse
otherwise.A lattice is coatomic if every element can be written as a meet of coatoms; i.e. if the dual of the lattice is atomic.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, where \(e\) is a meet-irreducible element that is not a coatom. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = posets.BooleanLattice(3) sage: L.is_coatomic() True sage: L = LatticePoset({1: [2], 2: [3, 4], 3: [5], 4:[5]}) sage: L.is_coatomic() False sage: L.is_coatomic(certificate=True) (False, 1)
See also
Dual property:
is_atomic()
Stronger properties:
is_cosectionally_complemented()
Mutually exclusive properties:
is_vertically_decomposable()
- is_complemented(certificate=False)#
Return
True
if the lattice is complemented, andFalse
otherwise.A lattice is complemented if every element has at least one complement.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, wheree
is an element without a complement. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]}) sage: L.is_complemented() True sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5], 4: [6], ....: 5: [7], 6: [7]}) sage: L.is_complemented() False sage: L.is_complemented(certificate=True) (False, 2)
See also
Stronger properties:
is_sectionally_complemented()
,is_cosectionally_complemented()
,is_orthocomplemented()
Other:
complements()
- is_constructible_by_doublings(type)#
Return
True
if the lattice is constructible by doublings, andFalse
otherwise.We call a lattice doubling constructible if it can be constructed from the one element lattice by a sequence of Alan Day’s doubling constructions.
Lattices constructible by interval doubling are also called bounded. Lattices constructible by lower and upper pseudo-interval are called lower bounded and upper bounded. Lattices constructible by any convex set doubling are called congruence normal.
INPUT:
type
– a string; can be one of the following:'interval'
- allow only doublings of an interval'lower'
- allow doublings of lower pseudo-interval; that is, a subset of the lattice with a unique minimal element'upper'
- allow doublings of upper pseudo-interval; that is, a subset of the lattice with a unique maximal element'convex'
- allow doubling of any convex set'any'
- allow doubling of any set
EXAMPLES:
The pentagon can be constructed by doubling intervals; the 5-element diamond can not be constructed by any doublings:
sage: posets.PentagonPoset().is_constructible_by_doublings('interval') True sage: posets.DiamondPoset(5).is_constructible_by_doublings('any') False
After doubling both upper and lower pseudo-interval a lattice is constructible by convex subset doubling:
sage: L = posets.BooleanLattice(2) sage: L = L.day_doubling([0, 1, 2]) # A lower pseudo-interval sage: L.is_constructible_by_doublings('interval') False sage: L.is_constructible_by_doublings('lower') True sage: L = L.day_doubling([(3,0), (1,1), (2,1)]) # An upper pseudo-interval sage: L.is_constructible_by_doublings('upper') False sage: L.is_constructible_by_doublings('convex') True
An example of a lattice that can be constructed by doublings of a non-convex subsets:
sage: L = LatticePoset(DiGraph('OQC?a?@CO?G_C@?GA?O??_??@?BO?A_?G??C??_?@???')) sage: L.is_constructible_by_doublings('convex') False sage: L.is_constructible_by_doublings('any') True
See also
Stronger properties:
is_distributive()
(doubling by interval),is_join_semidistributive()
(doubling by lower pseudo-intervals),is_meet_semidistributive()
(doubling by upper pseudo-intervals)Mutually exclusive properties:
is_simple()
(doubling by any set)Other:
day_doubling()
ALGORITHM:
According to [HOLM2016] a lattice \(L\) is lower bounded if and only if \(|\mathrm{Ji}(L)| = |\mathrm{Ji}(\mathrm{Con}\ L)|\), and so dually \(|\mathrm{Mi}(L)| = |\mathrm{Mi}(\mathrm{Con}\ L)|\) in upper bounded lattices. The same reference gives a test for being constructible by convex or by any subset.
- is_cosectionally_complemented(certificate=False)#
Return
True
if the lattice is cosectionally complemented, andFalse
otherwise.A lattice is cosectionally complemented if all intervals to the top element interpreted as sublattices are complemented lattices.
INPUT:
certificate
– (default:False
) Whether to return a certificate if the lattice is not cosectionally complemented.
OUTPUT:
If
certificate=False
returnTrue
orFalse
. Ifcertificate=True
return either(True, None)
or(False, (b, e))
, where \(b\) is an element so that in the sublattice from \(b\) to the top element has no complement for element \(e\).
EXAMPLES:
The smallest sectionally but not cosectionally complemented lattice:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5], 4: [6], 5: [6]}) sage: L.is_sectionally_complemented(), L.is_cosectionally_complemented() (True, False)
A sectionally and cosectionally but not relatively complemented lattice:
sage: L = LatticePoset(DiGraph('MYi@O?P??D?OG?@?O_?C?Q??O?W?@??O??')) sage: L.is_sectionally_complemented() and L.is_cosectionally_complemented() True sage: L.is_relatively_complemented() False
Getting a certificate:
sage: L = LatticePoset(DiGraph('HW?@D?Q?GE?G@??')) sage: L.is_cosectionally_complemented(certificate=True) (False, (2, 7))
See also
Dual property:
is_sectionally_complemented()
Weaker properties:
is_complemented()
,is_coatomic()
,is_regular()
Stronger properties:
is_relatively_complemented()
- is_dismantlable(certificate=False)#
Return
True
if the lattice is dismantlable, andFalse
otherwise.An \(n\)-element lattice \(L_n\) is dismantlable if there is a sublattice chain \(L_{n-1} \supset L_{n-2}, \supset \cdots, \supset L_0\) so that every \(L_i\) is a sublattice of \(L_{i+1}\) with one element less, and \(L_0\) is the empty lattice. In other words, a dismantlable lattice can be reduced to empty lattice removing doubly irreducible element one by one.
INPUT:
certificate
(boolean) – Whether to return a certificate.If
certificate = False
(default), returnsTrue
orFalse
accordingly.If
certificate = True
, returns:(True, elms)
when the lattice is dismantlable, whereelms
is elements listed in a possible removing order.(False, crown)
when the lattice is not dismantlable, wherecrown
is a subposet of \(2k\) elements \(a_1, \ldots, a_k, b_1, \ldots, b_k\) with covering relations \(a_i \lessdot b_i\) and \(a_i \lessdot b_{i+1}\) for \(i \in [1, \ldots, k-1]\), and \(a_k \lessdot b_1\).
EXAMPLES:
sage: DL12 = LatticePoset((divisors(12), attrcall("divides"))) sage: DL12.is_dismantlable() True sage: DL12.is_dismantlable(certificate=True) (True, [4, 2, 1, 3, 6, 12]) sage: B3 = posets.BooleanLattice(3) sage: B3.is_dismantlable() False sage: B3.is_dismantlable(certificate=True) (False, Finite poset containing 6 elements)
Every planar lattice is dismantlable. Converse is not true:
sage: L = LatticePoset( ([], [[0, 1], [0, 2], [0, 3], [0, 4], ....: [1, 7], [2, 6], [3, 5], [4, 5], ....: [4, 6], [4, 7], [5, 8], [6, 8], ....: [7, 8]]) ) sage: L.is_dismantlable() True sage: L.is_planar() False
See also
Stronger properties:
is_planar()
Weaker properties:
is_sublattice_dismantlable()
- is_distributive(certificate=False)#
Return
True
if the lattice is distributive, andFalse
otherwise.A lattice \((L, \vee, \wedge)\) is distributive if meet distributes over join: \(x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)\) for every \(x,y,z \in L\) just like \(x \cdot (y+z)=x \cdot y + x \cdot z\) in normal arithmetic. For duality in lattices it follows that then also join distributes over meet.
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (x, y, z))
, where \(x\), \(y\) and \(z\) are elements of the lattice such that \(x \wedge (y \vee z) \neq (x \wedge y) \vee (x \wedge z)\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]}) sage: L.is_distributive() True sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [6], 4: [6], 5: [6]}) sage: L.is_distributive() False sage: L.is_distributive(certificate=True) (False, (5, 3, 2))
See also
Weaker properties:
is_modular()
,is_semidistributive()
,is_join_distributive()
,is_meet_distributive()
,is_subdirectly_reducible()
,is_trim()
,is_constructible_by_doublings()
(by interval doubling),is_extremal()
Stronger properties:
is_stone()
- is_extremal()#
Return
True
if the lattice is extremal, andFalse
otherwise.A lattice is extremal if the number of join-irreducibles is equal to the number of meet-irreducibles and to the number of cover relations in the longest chains.
EXAMPLES:
sage: posets.PentagonPoset().is_extremal() True sage: P = LatticePoset(posets.SymmetricGroupWeakOrderPoset(3)) sage: P.is_extremal() False
See also
Stronger properties:
is_distributive()
,is_trim()
REFERENCES:
- is_geometric()#
Return
True
if the lattice is geometric, andFalse
otherwise.A lattice is geometric if it is both atomic and upper semimodular.
EXAMPLES:
Canonical example is the lattice of partitions of finite set ordered by refinement:
sage: L = posets.SetPartitions(4) sage: L.is_geometric() True
Smallest example of geometric lattice that is not modular:
sage: L = LatticePoset(DiGraph('K]?@g@S?q?M?@?@?@?@?@?@??')) sage: L.is_geometric() True sage: L.is_modular() False
Two non-examples:
sage: L = LatticePoset({1:[2, 3, 4], 2:[5, 6], 3:[5], 4:[6], 5:[7], 6:[7]}) sage: L.is_geometric() # Graded, but not upper semimodular False sage: L = posets.ChainPoset(3) sage: L.is_geometric() # Modular, but not atomic False
See also
Weaker properties:
is_upper_semimodular()
,is_relatively_complemented()
- is_interval_dismantlable(certificate=False)#
Return
True
if the lattice is interval dismantlable, andFalse
otherwise.An interval dismantling is a subdivision of a lattice to a principal upper set and a principal lower set. A lattice is interval dismantlable if it can be decomposed into 1-element lattices by consecutive interval distmantlings.
A lattice is minimally interval non-dismantlable if it is not interval dismantlable, but all of its sublattices are interval dismantlable.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
if
certificate=False
, return onlyTrue
orFalse
if
certificate=True
, return either(True, list)
wherelist
is a nested list showing the decomposition; for examplelist[1][0]
is a lower part of upper part of the lattice when decomposed twice.(False, M)
where \(M\) is a minimally interval non-dismantlable sublattice of the lattice.
EXAMPLES:
sage: L1 = LatticePoset({1: [2, 3], 3: [4, 5], 2: [6], 4: [6], 5: [6]}) sage: L1.is_interval_dismantlable() True sage: L2 = LatticePoset({1: [2, 3, 4, 5], 2: [6], 3: [6], 4: [6], ....: 5: [6, 7], 6: [8], 7: [9, 10], 8:[10], 9:[10]}) sage: L2.is_interval_dismantlable() False
To get certificates:
sage: L1.is_interval_dismantlable(certificate=True) (True, [[[1], [2]], [[[3], [5]], [[4], [6]]]]) sage: L2.is_interval_dismantlable(certificate=True) (False, Finite lattice containing 5 elements)
See also
Stronger properties:
is_join_semidistributive()
,is_meet_semidistributive()
Weaker properties:
is_sublattice_dismantlable()
- is_isoform(certificate=False)#
Return
True
if the lattice is isoform andFalse
otherwise.A congruence is isoform (or isotype) if all blocks are isomorphic sublattices. A lattice is isoform if it has only isoform congruences.
INPUT:
certificate
– (default:False
) whether to return a certificate if the lattice is not isoform
OUTPUT:
If
certificate=True
return either(True, None)
or(False, C)
, where \(C\) is a non-isoform congruence as asage.combinat.set_partition.SetPartition
. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1:[2, 3, 4], 2: [5, 6], 3: [6, 7], 4: [7], 5: [8], 6: [8], 7: [8]}) sage: L.is_isoform() True
Every isoform lattice is (trivially) uniform, but the converse is not true:
sage: L = LatticePoset({1: [2, 3, 6], 2: [4, 5], 3: [5], 4: [9, 8], 5: [7, 8], 6: [9], 7: [10], 8: [10], 9: [10]}) sage: L.is_isoform(), L.is_uniform() (False, True) sage: L.is_isoform(certificate=True) (False, {{1, 2, 4, 6, 9}, {3, 5, 7, 8, 10}})
See also
Weaker properties:
is_uniform()
Stronger properties:
is_simple()
,is_relatively_complemented()
Other:
congruence()
- is_join_distributive(certificate=False)#
Return
True
if the lattice is join-distributive andFalse
otherwise.A lattice is join-distributive if every interval from an element to the join of the element’s upper covers is a distributive lattice. Actually this distributive sublattice is then a Boolean lattice.
They are also called as Dilworth’s lattices and upper locally distributive lattices. They can be characterized in many other ways, see [Dil1940].
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, where \(e\) is an element such that the interval from \(e\) to the meet of upper covers of \(e\) is not distributive. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5, 7], ....: 4: [6, 7], 5: [8, 9], 6: [9], 7: [9, 10], ....: 8: [11], 9: [11], 10: [11]}) sage: L.is_join_distributive() True sage: L = LatticePoset({1: [2], 2: [3, 4], 3: [5], 4: [6], ....: 5: [7], 6: [7]}) sage: L.is_join_distributive() False sage: L.is_join_distributive(certificate=True) (False, 2)
See also
Dual property:
is_meet_distributive()
Weaker properties:
is_meet_semidistributive()
,is_upper_semimodular()
Stronger properties:
is_distributive()
- is_join_pseudocomplemented(certificate=False)#
Return
True
if the lattice is join-pseudocomplemented, andFalse
otherwise.A lattice is join-pseudocomplemented if every element \(e\) has a join-pseudocomplement \(e'\), i.e. the least element such that the join of \(e\) and \(e'\) is the top element.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, wheree
is an element without a join-pseudocomplement. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 5], 2: [3, 6], 3: [4], 4: [7], ....: 5: [6], 6: [7]}) sage: L.is_join_pseudocomplemented() True sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 3: [6], 4: [7], ....: 5: [7], 6: [7]}) sage: L.is_join_pseudocomplemented() False sage: L.is_join_pseudocomplemented(certificate=True) (False, 4)
See also
Dual property:
is_pseudocomplemented()
Stronger properties:
is_join_semidistributive()
- is_join_semidistributive(certificate=False)#
Return
True
if the lattice is join-semidistributive, andFalse
otherwise.A lattice is join-semidistributive if for all elements \(e, x, y\) in the lattice we have
\[e \vee x = e \vee y \implies e \vee x = e \vee (x \wedge y)\]INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (e, x, y))
such that \(e \vee x = e \vee y\) but \(e \vee x \neq e \vee (x \wedge y)\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: T4 = posets.TamariLattice(4) sage: T4.is_join_semidistributive() True sage: L = LatticePoset({1:[2, 3], 2:[4, 5], 3:[5, 6], ....: 4:[7], 5:[7], 6:[7]}) sage: L.is_join_semidistributive() False sage: L.is_join_semidistributive(certificate=True) (False, (5, 4, 6))
See also
Dual property:
is_meet_semidistributive()
Weaker properties:
is_join_pseudocomplemented()
,is_interval_dismantlable()
Stronger properties:
is_semidistributive()
,is_meet_distributive()
,is_constructible_by_doublings()
(by lower pseudo-intervals)
- is_left_modular_element(x)#
Return
True
ifx
is a left modular element andFalse
otherwise.INPUT:
x
– an element of the lattice
An element \(x\) in a lattice \(L\) is left modular if
\[(y \vee x) \wedge z = y \vee (x \wedge z)\]for every \(y \leq z \in L\).
It is enough to check this condition on all cover relations \(y < z\).
EXAMPLES:
sage: P = posets.PentagonPoset() sage: [i for i in P if P.is_left_modular_element(i)] [0, 2, 3, 4]
See also
Stronger properties:
is_modular_element()
- is_lower_semimodular(certificate=False)#
Return
True
if the lattice is lower semimodular andFalse
otherwise.A lattice is lower semimodular if any pair of elements with a common upper cover have also a common lower cover.
INPUT:
certificate
– (default:False
) Whether to return a certificate if the lattice is not lower semimodular.
OUTPUT:
If
certificate=False
returnTrue
orFalse
. Ifcertificate=True
return either(True, None)
or(False, (a, b))
, where \(a\) and \(b\) are covered by their join but do no cover their meet.
See Wikipedia article Semimodular_lattice
EXAMPLES:
sage: L = posets.DiamondPoset(5) sage: L.is_lower_semimodular() True sage: L = posets.PentagonPoset() sage: L.is_lower_semimodular() False sage: L = posets.ChainPoset(6) sage: L.is_lower_semimodular() True sage: L = LatticePoset(DiGraph('IS?`?AAOE_@?C?_@??')) sage: L.is_lower_semimodular(certificate=True) (False, (4, 2))
See also
Dual property:
is_upper_semimodular()
Weaker properties:
is_graded()
Stronger properties:
is_modular()
,is_meet_distributive()
- is_meet_distributive(certificate=False)#
Return
True
if the lattice is meet-distributive andFalse
otherwise.A lattice is meet-distributive if every interval to an element from the meet of the element’s lower covers is a distributive lattice. Actually this distributive sublattice is then a Boolean lattice.
They are also called as lower locally distributive lattices. They can be characterized in many other ways, see [Dil1940].
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, where \(e\) is an element such that the interval to \(e\) from the meet of lower covers of \(e\) is not distributive. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5, 6, 7], ....: 4: [7], 5: [9, 8], 6: [10, 8], 7: ....: [9, 10], 8: [11], 9: [11], 10: [11]}) sage: L.is_meet_distributive() True sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6], ....: 5: [6], 6: [7]}) sage: L.is_meet_distributive() False sage: L.is_meet_distributive(certificate=True) (False, 6)
See also
Dual property:
is_join_distributive()
Weaker properties:
is_join_semidistributive()
,is_lower_semimodular()
Stronger properties:
is_distributive()
- is_meet_semidistributive(certificate=False)#
Return
True
if the lattice is meet-semidistributive, andFalse
otherwise.A lattice is meet-semidistributive if for all elements \(e, x, y\) in the lattice we have
\[e \wedge x = e \wedge y \implies e \wedge x = e \wedge (x \vee y)\]INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (e, x, y))
such that \(e \wedge x = e \wedge y\) but \(e \wedge x \neq e \wedge (x \vee y)\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1:[2, 3, 4], 2:[4, 5], 3:[5, 6], ....: 4:[7], 5:[7], 6:[7]}) sage: L.is_meet_semidistributive() True sage: L_ = L.dual() sage: L_.is_meet_semidistributive() False sage: L_.is_meet_semidistributive(certificate=True) (False, (5, 4, 6))
See also
Dual property:
is_join_semidistributive()
Weaker properties:
is_pseudocomplemented()
,is_interval_dismantlable()
Stronger properties:
is_semidistributive()
,is_join_distributive()
,is_constructible_by_doublings()
(by upper pseudo-intervals)
- is_modular(L=None, certificate=False)#
Return
True
if the lattice is modular andFalse
otherwise.An element \(b\) of a lattice is modular if
\[x \vee (a \wedge b) = (x \vee a) \wedge b\]for every element \(x \leq b\) and \(a\). A lattice is modular if every element is modular. There are other equivalent definitions, see Wikipedia article Modular_lattice.
With the parameter
L
this can be used to check that some subset of elements are all modular.INPUT:
L
– (default:None
) a list of elements to check being modular, ifL
isNone
, then this checks the entire latticecertificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (x, a, b))
, where \(a\), \(b\) and \(x\) are elements of the lattice such that \(x < b\) but \(x \vee (a \wedge b) \neq (x \vee a) \wedge b\). If also \(L\) is given then \(b\) in the certificate will be an element of \(L\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = posets.DiamondPoset(5) sage: L.is_modular() True sage: L = posets.PentagonPoset() sage: L.is_modular() False sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]}) sage: L.is_modular(certificate=True) (False, (2, 6, 4)) sage: [L.is_modular([x]) for x in L] [True, True, False, True, True, False, True]
See also
Weaker properties:
is_upper_semimodular()
,is_lower_semimodular()
,is_supersolvable()
Stronger properties:
is_distributive()
Other:
is_modular_element()
- is_modular_element(x)#
Return
True
ifx
is a modular element andFalse
otherwise.INPUT:
x
– an element of the lattice
An element \(x\) in a lattice \(L\) is modular if \(x \leq b\) implies
\[x \vee (a \wedge b) = (x \vee a) \wedge b\]for every \(a, b \in L\).
EXAMPLES:
sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]}) sage: L.is_modular() False sage: [L.is_modular_element(x) for x in L] [True, True, False, True, True, False, True]
See also
Weaker properties:
is_left_modular_element()
Other:
is_modular()
to check modularity for the full lattice or some set of elements
- is_orthocomplemented(unique=False)#
Return
True
if the lattice admits an orthocomplementation, andFalse
otherwise.An orthocomplementation of a lattice is a function defined for every element \(e\) and marked as \(e^{\bot}\) such that 1) they are complements, i.e. \(e \vee e^{\bot}\) is the top element and \(e \wedge e^{\bot}\) is the bottom element, 2) it is involution, i.e. \({(e^{\bot})}^{\bot} = e\), and 3) it is order-reversing, i.e. if \(a < b\) then \(b^{\bot} < a^{\bot}\).
INPUT:
unique
, a Boolean – IfTrue
, returnTrue
only if the lattice has exactly one orthocomplementation. IfFalse
(the default), returnTrue
when the lattice has at least one orthocomplementation.
EXAMPLES:
sage: D5 = posets.DiamondPoset(5) sage: D5.is_orthocomplemented() False sage: D6 = posets.DiamondPoset(6) sage: D6.is_orthocomplemented() True sage: D6.is_orthocomplemented(unique=True) False sage: hexagon = LatticePoset({0:[1, 2], 1:[3], 2:[4], 3:[5], 4:[5]}) sage: hexagon.is_orthocomplemented(unique=True) True
See also
Weaker properties:
is_complemented()
,is_self_dual()
- is_planar()#
Return
True
if the lattice is upward planar, andFalse
otherwise.A lattice is upward planar if its Hasse diagram has a planar drawing in the \(\mathbb{R}^2\) plane, in such a way that \(x\) is strictly below \(y\) (on the vertical axis) whenever \(x<y\) in the lattice.
Note that the scientific literature on posets often omits “upward” and shortens it to “planar lattice” (e.g. [GW2014]), which can cause confusion with the notion of graph planarity in graph theory.
Note
Not all lattices which are planar – in the sense of graph planarity – admit such a planar drawing (see example below).
ALGORITHM:
Using the result from [Platt1976], this method returns its result by testing that the Hasse diagram of the lattice is planar (in the sense of graph theory) when an edge is added between the top and bottom elements.
EXAMPLES:
The Boolean lattice of \(2^3\) elements is not upward planar, even if its covering relations graph is planar:
sage: B3 = posets.BooleanLattice(3) sage: B3.is_planar() False sage: G = B3.cover_relations_graph() sage: G.is_planar() True
Ordinal product of planar lattices is obviously planar. Same does not apply to Cartesian products:
sage: P = posets.PentagonPoset() sage: Pc = P.product(P) sage: Po = P.ordinal_product(P) sage: Pc.is_planar() False sage: Po.is_planar() True
See also
Weaker properties:
is_dismantlable()
- is_pseudocomplemented(certificate=False)#
Return
True
if the lattice is pseudocomplemented, andFalse
otherwise.A lattice is (meet-)pseudocomplemented if every element \(e\) has a pseudocomplement \(e^\star\), i.e. the greatest element such that the meet of \(e\) and \(e^\star\) is the bottom element.
See Wikipedia article Pseudocomplement.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
, wheree
is an element without a pseudocomplement. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 5], 2: [3, 6], 3: [4], 4: [7], ....: 5: [6], 6: [7]}) sage: L.is_pseudocomplemented() True sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 3: [6], 4: [7], ....: 5: [7], 6: [7]}) sage: L.is_pseudocomplemented() False sage: L.is_pseudocomplemented(certificate=True) (False, 3)
See also
Dual property:
is_join_pseudocomplemented()
Stronger properties:
is_meet_semidistributive()
Other:
pseudocomplement()
.
ALGORITHM:
According to [Cha92] a lattice is pseudocomplemented if and only if every atom has a pseudocomplement. So we only check those.
- is_regular(certificate=False)#
Return
True
if the lattice is regular andFalse
otherwise.A congruence of a lattice is regular if it is generated by any of its parts. A lattice is regular if it has only regular congruences.
INPUT:
certificate
– (default:False
) whether to return a certificate if the lattice is not regular
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (C, p))
, where \(C\) is a non-regular congruence as asage.combinat.set_partition.SetPartition
and \(p\) is a congruence class of \(C\) such that the congruence generated by \(p\) is not \(C\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [8, 7], 4: [6, 7], 5: [8], 6: [9], 7: [9], 8: [9]}) sage: L.is_regular() True sage: N5 = posets.PentagonPoset() sage: N5.is_regular() False sage: N5.is_regular(certificate=True) (False, ({{0}, {1}, {2, 3}, {4}}, [0]))
See also
Stronger properties:
is_uniform()
,is_sectionally_complemented()
,is_cosectionally_complemented()
Mutually exclusive properties:
is_vertically_decomposable()
Other:
congruence()
- is_relatively_complemented(certificate=False)#
Return
True
if the lattice is relatively complemented, andFalse
otherwise.A lattice is relatively complemented if every interval of it is a complemented lattice.
INPUT:
certificate
– (default:False
) Whether to return a certificate if the lattice is not relatively complemented.
OUTPUT:
If
certificate=True
return either(True, None)
or(False, (a, b, c))
, where \(b\) is the only element that covers \(a\) and is covered by \(c\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4, 8], 2: [5, 6], 3: [5, 7], ....: 4: [6, 7], 5: [9], 6: [9], 7: [9], 8: [9]}) sage: L.is_relatively_complemented() True sage: L = posets.PentagonPoset() sage: L.is_relatively_complemented() False
Relatively complemented lattice must be both atomic and coatomic. Implication to other direction does not hold:
sage: L = LatticePoset({0: [1, 2, 3, 4, 5], 1: [6, 7], 2: [6, 8], ....: 3: [7, 8, 9], 4: [9, 11], 5: [9, 10], ....: 6: [10, 11], 7: [12], 8: [12], 9: [12], ....: 10: [12], 11: [12]}) sage: L.is_atomic() and L.is_coatomic() True sage: L.is_relatively_complemented() False
We can also get a non-complemented 3-element interval:
sage: L.is_relatively_complemented(certificate=True) (False, (1, 6, 11))
See also
Weaker properties:
is_sectionally_complemented()
,is_cosectionally_complemented()
,is_isoform()
Stronger properties:
is_geometric()
- is_sectionally_complemented(certificate=False)#
Return
True
if the lattice is sectionally complemented, andFalse
otherwise.A lattice is sectionally complemented if all intervals from the bottom element interpreted as sublattices are complemented lattices.
INPUT:
certificate
– (default:False
) Whether to return a certificate if the lattice is not sectionally complemented.
OUTPUT:
If
certificate=False
returnTrue
orFalse
. Ifcertificate=True
return either(True, None)
or(False, (t, e))
, where \(t\) is an element so that in the sublattice from the bottom element to \(t\) has no complement for element \(e\).
EXAMPLES:
Smallest examples of a complemented but not sectionally complemented lattice and a sectionally complemented but not relatively complemented lattice:
sage: L = posets.PentagonPoset() sage: L.is_complemented() True sage: L.is_sectionally_complemented() False sage: L = LatticePoset({0: [1, 2, 3], 1: [4], 2: [4], 3: [5], 4: [5]}) sage: L.is_sectionally_complemented() True sage: L.is_relatively_complemented() False
Getting a certificate:
sage: L = LatticePoset(DiGraph('HYOgC?C@?C?G@??')) sage: L.is_sectionally_complemented(certificate=True) (False, (6, 1))
See also
Dual property:
is_cosectionally_complemented()
Weaker properties:
is_complemented()
,is_atomic()
,is_regular()
Stronger properties:
is_relatively_complemented()
- is_semidistributive()#
Return
True
if the lattice is both join- and meet-semidistributive, andFalse
otherwise.EXAMPLES:
Tamari lattices are typical examples of semidistributive but not distributive (and hence not modular) lattices:
sage: T4 = posets.TamariLattice(4) sage: T4.is_semidistributive(), T4.is_distributive() (True, False)
Smallest non-selfdual example:
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5], 4: [6], 5: [7], 6: [7]}) sage: L.is_semidistributive() True
The diamond is not semidistributive:
sage: L = posets.DiamondPoset(5) sage: L.is_semidistributive() False
See also
Weaker properties:
is_join_semidistributive()
,is_meet_semidistributive()
Stronger properties:
is_distributive()
- is_simple(certificate=False)#
Return
True
if the lattice is simple andFalse
otherwise.A lattice is simple if it has no nontrivial congruences; in other words, for every two distinct elements \(a\) and \(b\) the principal congruence generated by \((a, b)\) has only one component, i.e. the whole lattice.
INPUT:
certificate
– (default:False
) whether to return a certificate if the lattice is not simple
OUTPUT:
If
certificate=True
return either(True, None)
or(False, c)
, where \(c\) is a nontrivial congruence as asage.combinat.set_partition.SetPartition
. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: posets.DiamondPoset(5).is_simple() # Smallest nontrivial example True sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6], 5: [6]}) sage: L.is_simple() False sage: L.is_simple(certificate=True) (False, {{1, 3}, {2, 4, 5, 6}})
Two more examples. First is a non-simple lattice without any 2-element congruences:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5], 4: [6, 7], ....: 5: [8], 6: [8], 7: [8]}) sage: L.is_simple() False sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6, 7], 4: [8], ....: 5: [8], 6: [8], 7: [8]}) sage: L.is_simple() True
See also
Weaker properties:
is_isoform()
Mutually exclusive properties:
is_constructible_by_doublings()
(by any set)Other:
congruence()
- is_stone(certificate=False)#
Return
True
if the lattice is a Stone lattice, andFalse
otherwise.The lattice is expected to be distributive (and hence pseudocomplemented).
A pseudocomplemented lattice is a Stone lattice if
\[e^* \vee e^{**} = \top\]for every element \(e\) of the lattice, where \(^*\) is the pseudocomplement and \(\top\) is the top element of the lattice.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(True, None)
or(False, e)
such that \(e^* \vee e^{**} \neq \top\). Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
Divisor lattices are canonical example:
sage: D72 = posets.DivisorLattice(72) sage: D72.is_stone() True
A non-example:
sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]}) sage: L.is_stone() False
See also
Weaker properties:
is_distributive()
- is_subdirectly_reducible(certificate=False)#
Return
True
if the lattice is subdirectly reducible.A lattice \(M\) is a subdirect product of \(K\) and \(L\) if it is a sublattice of \(K \times L\). Lattice \(M\) is subdirectly reducible if there exists such lattices \(K\) and \(L\) so that \(M\) is not a sublattice of either.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
if
certificate=False
, return onlyTrue
orFalse
if
certificate=True
, return either(True, (K, L))
such that the lattice is isomorphic to a sublattice of \(K \times L\).(False, (a, b))
, where \(a\) and \(b\) are elements that are in the same congruence class for every nontrivial congruence of the lattice. Special case: If the lattice has zero or one element, return(False, None)
.
EXAMPLES:
sage: N5 = posets.PentagonPoset() sage: N5.is_subdirectly_reducible() False sage: hex = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]}) sage: hex.is_subdirectly_reducible() True sage: hex.is_subdirectly_reducible(certificate=True) (True, (Finite lattice containing 5 elements, Finite lattice containing 5 elements)) sage: N5.is_subdirectly_reducible(certificate=True) (False, (2, 3)) sage: res, cert = hex.is_subdirectly_reducible(certificate=True) sage: cert[0].is_isomorphic(N5) True
See also
Stronger properties:
is_distributive()
,is_vertically_decomposable()
Other:
subdirect_decomposition()
- is_sublattice(other)#
Return
True
if the lattice is a sublattice ofother
, andFalse
otherwise.Lattice \(K\) is a sublattice of \(L\) if \(K\) is an (induced) subposet of \(L\) and closed under meet and join of \(L\).
Note
This method does not check whether the lattice is a isomorphic (i.e., up to relabeling) sublattice of
other
, but only ifother
directly contains the lattice as an sublattice.EXAMPLES:
A pentagon sublattice in a non-modular lattice:
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5, 6], 4: [7], 5: [7], 6: [7]}) sage: N5 = LatticePoset({1: [2, 6], 2: [4], 4: [7], 6: [7]}) sage: N5.is_sublattice(L) True
This pentagon is a subposet but not closed under join, hence not a sublattice:
sage: N5_ = LatticePoset({1: [2, 3], 2: [4], 3: [7], 4: [7]}) sage: N5_.is_induced_subposet(L) True sage: N5_.is_sublattice(L) False
See also
- is_sublattice_dismantlable()#
Return
True
if the lattice is sublattice dismantlable, andFalse
otherwise.A sublattice dismantling is a subdivision of a lattice into two non-empty sublattices. A lattice is sublattice dismantlable if it can be decomposed into 1-element lattices by consecutive sublattice dismantlings.
EXAMPLES:
The smallest non-example is this (and the dual):
sage: P = Poset({1: [11, 12, 13], 2: [11, 14, 15], ....: 3: [12, 14, 16], 4: [13, 15, 16]}) sage: L = LatticePoset(P.with_bounds()) sage: L.is_sublattice_dismantlable() False
Here we adjoin a (double-irreducible-)dismantlable lattice as a part to an interval-dismantlable lattice:
sage: B3 = posets.BooleanLattice(3) sage: N5 = posets.PentagonPoset() sage: L = B3.adjunct(N5, 1, 7) sage: L.is_dismantlable(), L.is_interval_dismantlable() (False, False) sage: L.is_sublattice_dismantlable() True
See also
Stronger properties:
is_dismantlable()
,is_interval_dismantlable()
Todo
Add a certificate-option.
- is_supersolvable(certificate=False)#
Return
True
if the lattice is supersolvable, andFalse
otherwise.A lattice \(L\) is supersolvable if there exists a maximal chain \(C\) such that every \(x \in C\) is a modular element in \(L\). Equivalent definition is that the sublattice generated by \(C\) and any other chain is distributive.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(False, None)
or(True, C)
, whereC
is a maximal chain of modular elements. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = posets.DiamondPoset(5) sage: L.is_supersolvable() True sage: L = posets.PentagonPoset() sage: L.is_supersolvable() False sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]}) sage: L.is_supersolvable() True sage: L.is_supersolvable(certificate=True) (True, [1, 2, 5, 7]) sage: L.is_modular() False sage: L = LatticePoset({0: [1, 2, 3, 4], 1: [5, 6, 7], ....: 2: [5, 8, 9], 3: [6, 8, 10], 4: [7, 9, 10], ....: 5: [11], 6: [11], 7: [11], 8: [11], ....: 9: [11], 10: [11]}) sage: L.is_supersolvable() False
See also
Weaker properties:
is_graded()
Stronger properties:
is_modular()
- is_trim(certificate=False)#
Return whether a lattice is trim.
A lattice is trim if it is extremal and left modular.
This notion is defined in [Thom2006].
INPUT:
certificate – boolean (default
False
) whether to return instead a maximum chain of left modular elements
EXAMPLES:
sage: P = posets.PentagonPoset() sage: P.is_trim() True sage: Q = LatticePoset(posets.SymmetricGroupWeakOrderPoset(3)) sage: Q.is_trim() False
See also
Weaker properties:
is_extremal()
Stronger properties:
is_distributive()
REFERENCES:
- Thom2006
Hugh Thomas, An analogue of distributivity for ungraded lattices. Order 23 (2006), no. 2-3, 249-269.
- is_uniform(certificate=False)#
Return
True
if the lattice is uniform andFalse
otherwise.A congruence is uniform if all blocks have equal number of elements. A lattice is uniform if it has only uniform congruences.
INPUT:
certificate
– (default:False
) whether to return a certificate if the lattice is not uniform
OUTPUT:
If
certificate=True
return either(True, None)
or(False, C)
, where \(C\) is a non-uniform congruence as asage.combinat.set_partition.SetPartition
. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [6, 7], 3: [5], 4: [5], 5: [9, 8], 6: [9], 7: [10], 8: [10], 9: [10]}) sage: L.is_uniform() True
Every uniform lattice is regular, but the converse is not true:
sage: N6 = LatticePoset({1: [2, 3, 5], 2: [4], 3: [4], 5: [6], 4: [6]}) sage: N6.is_uniform(), N6.is_regular() (False, True) sage: N6.is_uniform(certificate=True) (False, {{1, 2, 3, 4}, {5, 6}})
See also
Weaker properties:
is_regular()
Stronger properties:
is_isoform()
Other:
congruence()
- is_upper_semimodular(certificate=False)#
Return
True
if the lattice is upper semimodular andFalse
otherwise.A lattice is upper semimodular if any pair of elements with a common lower cover have also a common upper cover.
INPUT:
certificate
– (default:False
) Whether to return a certificate if the lattice is not upper semimodular.
OUTPUT:
If
certificate=False
returnTrue
orFalse
. Ifcertificate=True
return either(True, None)
or(False, (a, b))
, where \(a\) and \(b\) covers their meet but are not covered by their join.
See Wikipedia article Semimodular_lattice
EXAMPLES:
sage: L = posets.DiamondPoset(5) sage: L.is_upper_semimodular() True sage: L = posets.PentagonPoset() sage: L.is_upper_semimodular() False sage: L = LatticePoset(posets.IntegerPartitions(4)) sage: L.is_upper_semimodular() True sage: L = LatticePoset({1:[2, 3, 4], 2: [5], 3:[5, 6], 4:[6], 5:[7], 6:[7]}) sage: L.is_upper_semimodular(certificate=True) (False, (4, 2))
See also
Dual property:
is_lower_semimodular()
Weaker properties:
is_graded()
Stronger properties:
is_modular()
,is_join_distributive()
,is_geometric()
- is_vertically_decomposable(certificate=False)#
Return
True
if the lattice is vertically decomposable, andFalse
otherwise.A lattice is vertically decomposable if it has an element that is comparable to all elements and is neither the bottom nor the top element.
Informally said, a lattice is vertically decomposable if it can be seen as two lattices “glued” by unifying the top element of first lattice to the bottom element of second one.
INPUT:
certificate
– (default:False
) whether to return a certificate
OUTPUT:
If
certificate=True
return either(False, None)
or(True, e)
, where \(e\) is an element that is comparable to all other elements and is neither the bottom nor the top element. Ifcertificate=False
returnTrue
orFalse
.
EXAMPLES:
sage: posets.TamariLattice(4).is_vertically_decomposable() False sage: L = LatticePoset( ([1, 2, 3, 6, 12, 18, 36], ....: attrcall("divides")) ) sage: L.is_vertically_decomposable() True sage: L.is_vertically_decomposable(certificate=True) (True, 6)
See also
Weaker properties:
is_subdirectly_reducible()
Mutually exclusive properties:
is_atomic()
,is_coatomic()
,is_regular()
Other:
vertical_decomposition()
- isomorphic_sublattices_iterator(other)#
Return an iterator over the sublattices of the lattice isomorphic to
other
.INPUT:
other – a finite lattice
EXAMPLES:
A non-modular lattice contains a pentagon sublattice:
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5, 6], 4: [7], 5: [7], 6: [7]}) sage: L.is_modular() False sage: N5 = posets.PentagonPoset() sage: N5_in_L = next(L.isomorphic_sublattices_iterator(N5)); N5_in_L Finite lattice containing 5 elements sage: N5_in_L.list() [1, 3, 6, 4, 7]
A divisor lattice is modular, hence does not contain the pentagon as sublattice, even if it has the pentagon subposet:
sage: D12 = posets.DivisorLattice(12) sage: D12.has_isomorphic_subposet(N5) True sage: list(D12.isomorphic_sublattices_iterator(N5)) []
Warning
This function will return same sublattice as many times as there are automorphism on it. This is due to
subgraph_search_iterator()
returning labelled subgraphs.
- join_primes()#
Return the join-prime elements of the lattice.
An element \(x\) of a lattice \(L\) is join-prime if \(x \le a \vee b\) implies \(x \le a\) or \(x \le b\) for every \(a, b \in L\).
These are also called coprime in some books. Every join-prime is join-irreducible; converse holds if and only if the lattice is distributive.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5], ....: 4: [6], 5: [7], 6: [7]}) sage: L.join_primes() [3, 4] sage: D12 = posets.DivisorLattice(12) # Distributive lattice sage: D12.join_irreducibles() == D12.join_primes() True
See also
Dual function:
meet_primes()
Other:
join_irreducibles()
- maximal_sublattices()#
Return maximal (proper) sublattices of the lattice.
EXAMPLES:
sage: L = LatticePoset(( [], [[1,2],[1,17],[1,8],[2,3],[2,22], ....: [2,5],[2,7],[17,22],[17,13],[8,7], ....: [8,13],[3,16],[3,9],[22,16],[22,18], ....: [22,10],[5,18],[5,14],[7,9],[7,14], ....: [7,10],[13,10],[16,6],[16,19],[9,19], ....: [18,6],[18,33],[14,33],[10,19], ....: [10,33],[6,4],[19,4],[33,4]] )) sage: maxs = L.maximal_sublattices() sage: len(maxs) 7 sage: sorted(maxs[0].list()) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18, 19, 22, 33]
- meet_primes()#
Return the meet-prime elements of the lattice.
An element \(x\) of a lattice \(L\) is meet-prime if \(x \ge a \wedge b\) implies \(x \ge a\) or \(x \ge b\) for every \(a, b \in L\).
These are also called just prime in some books. Every meet-prime is meet-irreducible; converse holds if and only if the lattice is distributive.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5], ....: 4: [6], 5: [7], 6: [7]}) sage: L.meet_primes() [6, 5] sage: D12 = posets.DivisorLattice(12) sage: sorted(D12.meet_primes()) [3, 4, 6]
See also
Dual function:
join_primes()
Other:
meet_irreducibles()
- moebius_algebra(R)#
Return the Möbius algebra of
self
overR
.OUTPUT:
An instance of
sage.combinat.posets.moebius_algebra.MoebiusAlgebra
.EXAMPLES:
sage: L = posets.BooleanLattice(4) sage: L.moebius_algebra(QQ) Moebius algebra of Finite lattice containing 16 elements over Rational Field
- neutral_elements()#
Return the list of neutral elements of the lattice.
An element \(e\) of the lattice \(L\) is neutral if the sublattice generated by \(e\), \(x\) and \(y\) is distributive for all \(x, y \in L\). It can also be characterized as an element of intersection of maximal distributive sublattices.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3], 2: [6], 3: [4, 5, 6], 4: [8], ....: 5: [7], 6: [7], 7: [8, 9], 8: [10], 9: [10]}) sage: L.neutral_elements() [1, 3, 8, 10]
- quantum_moebius_algebra(q=None)#
Return the quantum Möbius algebra of
self
with parameterq
.INPUT:
q
– (optional) the deformation parameter \(q\)
OUTPUT:
An instance of
sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra
.EXAMPLES:
sage: L = posets.BooleanLattice(4) sage: L.quantum_moebius_algebra() Quantum Moebius algebra of Finite lattice containing 16 elements with q=q over Univariate Laurent Polynomial Ring in q over Integer Ring
- quotient(congruence, labels='tuple')#
Return the quotient lattice by
congruence
.Let \(L\) be a lattice and \(\Theta\) be a congruence of \(L\) with congruence classes \(\Theta_1, \Theta_2, \ldots\). The quotient lattice \(L/\Theta\) is the lattice with elements \(\{\Theta_1, \Theta_2, \ldots\}\) and meet and join given by the original lattice. Explicitly, if \(e_1 \in \Theta_1\) and \(e_2 \in \Theta_2\), such that \(e_1 \vee e_2 \in \Theta_3\) then \(\Theta_1 \vee \Theta_2 = \Theta_3\) in \(L/\Theta\) and similarly for meets.
INPUT:
congruence
– list of lists; a congruencelabels
– string; the elements of the resulting lattice and can be one of the following:'tuple'
- elements are tuples of elements of the original lattice'lattice'
- elements are sublattices of the original lattice'integer'
- elements are labeled by integers
Warning
congruence
is expected to be a valid congruence of the lattice. This is not checked.EXAMPLES:
sage: L = posets.PentagonPoset() sage: c = L.congruence([[0, 1]]) sage: I = L.quotient(c); I Finite lattice containing 2 elements sage: I.top() (2, 3, 4) sage: I = L.quotient(c, labels='lattice') sage: I.top() Finite lattice containing 3 elements sage: B3 = posets.BooleanLattice(3) sage: c = B3.congruence([[0,1]]) sage: B2 = B3.quotient(c, labels='integer') sage: B2.is_isomorphic(posets.BooleanLattice(2)) True
See also
- skeleton()#
Return the skeleton of the lattice.
The lattice is expected to be pseudocomplemented.
The skeleton of a pseudocomplemented lattice \(L\), where \(^*\) is the pseudocomplementation operation, is the subposet induced by \(\{e^* \mid e \in L\}\). Actually this poset is a Boolean lattice.
EXAMPLES:
sage: D12 = posets.DivisorLattice(12) sage: S = D12.skeleton(); S Finite lattice containing 4 elements sage: S.cover_relations() [[1, 3], [1, 4], [3, 12], [4, 12]] sage: T4 = posets.TamariLattice(4) sage: T4.skeleton().is_isomorphic(posets.BooleanLattice(3)) True
- subdirect_decomposition()#
Return the subdirect decomposition of the lattice.
The subdirect decomposition of a lattice \(L\) is the list of smaller lattices \(L_1, \ldots, L_n\) such that \(L\) is a sublattice of \(L_1 \times \ldots \times L_n\), none of \(L_i\) can be decomposed further and \(L\) is not a sublattice of any \(L_i\). (Except when the list has only one element, i.e. when the lattice is subdirectly irreducible.)
EXAMPLES:
sage: posets.ChainPoset(3).subdirect_decomposition() [Finite lattice containing 2 elements, Finite lattice containing 2 elements] sage: L = LatticePoset({1: [2, 4], 2: [3], 3: [6, 7], 4: [5, 7], ....: 5: [9, 8], 6: [9], 7: [9], 8: [10], 9: [10]}) sage: Ldecomp = L.subdirect_decomposition() sage: [fac.cardinality() for fac in Ldecomp] [2, 5, 7] sage: Ldecomp[1].is_isomorphic(posets.PentagonPoset()) True
- sublattice(elms)#
Return the smallest sublattice containing elements on the given list.
INPUT:
elms
– a list of elements of the lattice.
EXAMPLES:
sage: L = LatticePoset(([], [[1,2],[1,17],[1,8],[2,3],[2,22],[2,5],[2,7],[17,22],[17,13],[8,7],[8,13],[3,16],[3,9],[22,16],[22,18],[22,10],[5,18],[5,14],[7,9],[7,14],[7,10],[13,10],[16,6],[16,19],[9,19],[18,6],[18,33],[14,33],[10,19],[10,33],[6,4],[19,4],[33,4]])) sage: L.sublattice([14, 13, 22]).list() [1, 2, 8, 7, 14, 17, 13, 22, 10, 33] sage: L = posets.BooleanLattice(3) sage: L.sublattice([3,5,6,7]) Finite lattice containing 8 elements
- sublattices()#
Return all sublattices of the lattice.
EXAMPLES:
sage: L = LatticePoset({1: [2, 3, 4], 2:[5], 3:[5, 6], 4:[6], ....: 5:[7], 6:[7]}) sage: sublats = L.sublattices(); len(sublats) 54 sage: sublats[3] Finite lattice containing 4 elements sage: sublats[3].list() [1, 2, 3, 5]
- sublattices_lattice(labels='lattice')#
Return the lattice of sublattices.
Every element of the returned lattice is a sublattice and they are ordered by containment; that is, atoms are one-element lattices, coatoms are maximal sublattices of the original lattice and so on.
INPUT:
labels
– string; can be one of the following:'lattice'
(default) elements of the lattice will be lattices that correspond to sublattices of the original lattice'tuple'
- elements are tuples of elements of the sublattices of the original lattice'integer'
- elements are plain integers
EXAMPLES:
sage: D4 = posets.DiamondPoset(4) sage: sll = D4.sublattices_lattice(labels='tuple') sage: sll.coatoms() # = maximal sublattices of the original lattice [(0, 1, 3), (0, 2, 3)] sage: L = posets.DivisorLattice(12) sage: sll = L.sublattices_lattice() sage: L.is_dismantlable() == (len(sll.atoms()) == sll.rank()) True
- vertical_composition(other, labels='pairs')#
Return the vertical composition of the lattice with
other
.Let \(L\) and \(K\) be lattices and \(b_K\) the bottom element of \(K\). The vertical composition of \(L\) and \(K\) is the ordinal sum of \(L\) and \(K \setminus \{b_K\}\). Informally said this is lattices “glued” together with a common element.
Mathematically, it is only defined when \(L\) and \(K\) have no common element; here we force that by giving them different names in the resulting poset.
INPUT:
other
– a latticelabels
– a string (default'pairs'
); can be one of the following:'pairs'
- each elementv
in this poset will be named(0, v)
and each elementu
inother
will be named(1, u)
in the result'integers'
- the elements of the result will be relabeled with consecutive integers
EXAMPLES:
sage: L = LatticePoset({'a': ['b', 'c'], 'b': ['d'], 'c': ['d']}) sage: K = LatticePoset({'e': ['f', 'g'], 'f': ['h'], 'g': ['h']}) sage: M = L.vertical_composition(K) sage: M.list() [(0, 'a'), (0, 'b'), (0, 'c'), (0, 'd'), (1, 'f'), (1, 'g'), (1, 'h')] sage: M.upper_covers((0, 'd')) [(1, 'f'), (1, 'g')] sage: C2 = posets.ChainPoset(2) sage: M3 = posets.DiamondPoset(5) sage: L = C2.vertical_composition(M3, labels='integers') sage: L.cover_relations() [[0, 1], [1, 2], [1, 3], [1, 4], [2, 5], [3, 5], [4, 5]]
- vertical_decomposition(elements_only=False)#
Return sublattices from the vertical decomposition of the lattice.
Let \(d_1, \ldots, d_n\) be elements (excluding the top and bottom elements) comparable to every element of the lattice. Let \(b\) be the bottom element and \(t\) be the top element. This function returns either a list \(d_1, \ldots, d_n\), or the list of intervals \([b, d_1], [d_1, d_2], \ldots, [d_{n-1}, d_n], [d_n, t]\) as lattices.
Informally said, this returns the lattice split into parts at every single-element “cutting point”.
INPUT:
elements_only
- ifTrue
, return the list of decomposing elements as defined above; ifFalse
(the default), return the list of sublattices so that the lattice is a vertical composition of them.
EXAMPLES:
Number 6 is divided by 1, 2, and 3, and it divides 12, 18 and 36:
sage: L = LatticePoset( ([1, 2, 3, 6, 12, 18, 36], ....: attrcall("divides")) ) sage: parts = L.vertical_decomposition() sage: [lat.list() for lat in parts] [[1, 2, 3, 6], [6, 12, 18, 36]] sage: L.vertical_decomposition(elements_only=True) [6]
- class sage.combinat.posets.lattices.FiniteMeetSemilattice(hasse_diagram, elements, category, facade, key)#
Bases:
sage.combinat.posets.posets.FinitePoset
Note
We assume that the argument passed to MeetSemilattice is the poset of a meet-semilattice (i.e. a poset with greatest lower bound for each pair of elements).
- Element#
alias of
sage.combinat.posets.elements.MeetSemilatticeElement
- atoms()#
Return the list atoms of this (semi)lattice.
An atom of a lattice is an element covering the bottom element.
EXAMPLES:
sage: L = posets.DivisorLattice(60) sage: sorted(L.atoms()) [2, 3, 5]
See also
Dual function:
coatoms()
- meet(x, y=None)#
Return the meet of given elements in the lattice.
INPUT:
x, y
– two elements of the (semi)lattice ORx
– a list or tuple of elements
EXAMPLES:
sage: D = posets.DiamondPoset(5) sage: D.meet(1, 2) 0 sage: D.meet(1, 1) 1 sage: D.meet(1, 0) 0 sage: D.meet(1, 4) 1
Using list of elements as an argument. Meet of empty list is the bottom element:
sage: B4=posets.BooleanLattice(4) sage: B4.meet([3,5,6]) 0 sage: B4.meet([]) 15
For non-facade lattices operator
*
works for meet:sage: L = posets.PentagonPoset(facade=False) sage: L(1)*L(2) 0
See also
Dual function:
join()
- meet_matrix()#
Return a matrix whose
(i,j)
entry isk
, whereself.linear_extension()[k]
is the meet (greatest lower bound) ofself.linear_extension()[i]
andself.linear_extension()[j]
.EXAMPLES:
sage: P = LatticePoset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False) sage: M = P.meet_matrix(); M [0 0 0 0 0 0 0 0] [0 1 0 1 0 0 0 1] [0 0 2 2 2 0 2 2] [0 1 2 3 2 0 2 3] [0 0 2 2 4 0 2 4] [0 0 0 0 0 5 5 5] [0 0 2 2 2 5 6 6] [0 1 2 3 4 5 6 7] sage: M[P(4).vertex,P(3).vertex] == P(0).vertex True sage: M[P(5).vertex,P(2).vertex] == P(2).vertex True sage: M[P(5).vertex,P(2).vertex] == P(5).vertex False
- pseudocomplement(element)#
Return the pseudocomplement of
element
, if it exists.The (meet-)pseudocomplement is the greatest element whose meet with given element is the bottom element. I.e. in a meet-semilattice with bottom element \(\hat{0}\) the pseudocomplement of an element \(e\) is the element \(e^\star\) such that \(e \wedge e^\star = \hat{0}\) and \(e' \le e^\star\) if \(e \wedge e' = \hat{0}\).
See Wikipedia article Pseudocomplement.
INPUT:
element
– an element of the lattice.
OUTPUT:
An element of the lattice or
None
if the pseudocomplement does not exist.EXAMPLES:
The pseudocomplement’s pseudocomplement is not always the original element:
sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]}) sage: L.pseudocomplement(2) 5 sage: L.pseudocomplement(5) 4
An element can have complements but no pseudocomplement, or vice versa:
sage: L = LatticePoset({0: [1, 2], 1: [3, 4, 5], 2: [5], 3: [6], ....: 4: [6], 5: [6]}) sage: L.complements(1), L.pseudocomplement(1) ([], 2) sage: L.complements(2), L.pseudocomplement(2) ([3, 4], None)
See also
- subjoinsemilattice(elms)#
Return the smallest join-subsemilattice containing elements on the given list.
INPUT:
elms
– a list of elements of the lattice.
EXAMPLES:
sage: L = posets.DivisorLattice(1000) sage: L_ = L.subjoinsemilattice([2, 25, 125]); L_ Finite join-semilattice containing 5 elements sage: sorted(L_.list()) [2, 25, 50, 125, 250]
See also
Dual function:
submeetsemilattice()
- submeetsemilattice(elms)#
Return the smallest meet-subsemilattice containing elements on the given list.
INPUT:
elms
– a list of elements of the lattice.
EXAMPLES:
sage: L = posets.DivisorLattice(1000) sage: L_ = L.submeetsemilattice([200, 250, 125]); L_ Finite meet-semilattice containing 5 elements sage: L_.list() [25, 50, 200, 125, 250]
See also
Dual function:
subjoinsemilattice()
- sage.combinat.posets.lattices.JoinSemilattice(data=None, *args, **options)#
Construct a join semi-lattice from various forms of input data.
INPUT:
data
,*args
,**options
– data and options that will be passed down toPoset()
to construct a poset that is also a join semilattice
See also
EXAMPLES:
Using data that defines a poset:
sage: JoinSemilattice([[1,2],[3],[3]]) Finite join-semilattice containing 3 elements sage: JoinSemilattice([[1,2],[3],[3]], cover_relations = True) Finite join-semilattice containing 3 elements
Using a previously constructed poset:
sage: P = Poset([[1,2],[3],[3]]) sage: J = JoinSemilattice(P); J Finite join-semilattice containing 3 elements sage: type(J) <class 'sage.combinat.posets.lattices.FiniteJoinSemilattice_with_category'>
If the data is not a lattice, then an error is raised:
sage: JoinSemilattice({'a': ['b', 'c'], 'b': ['d', 'e'], ....: 'c': ['d', 'e'], 'd': ['f'], 'e': ['f']}) Traceback (most recent call last): ... LatticeError: no join for b and c
- sage.combinat.posets.lattices.LatticePoset(data=None, *args, **options)#
Construct a lattice from various forms of input data.
INPUT:
data
,*args
,**options
– data and options that will be passed down toPoset()
to construct a poset that is also a lattice.
OUTPUT:
An instance of
FiniteLatticePoset
.See also
Posets
,FiniteLatticePosets
,JoinSemiLattice()
,MeetSemiLattice()
EXAMPLES:
Using data that defines a poset:
sage: LatticePoset([[1,2],[3],[3]]) Finite lattice containing 3 elements sage: LatticePoset([[1,2],[3],[3]], cover_relations = True) Finite lattice containing 3 elements
Using a previously constructed poset:
sage: P = Poset([[1,2],[3],[3]]) sage: L = LatticePoset(P); L Finite lattice containing 3 elements sage: type(L) <class 'sage.combinat.posets.lattices.FiniteLatticePoset_with_category'>
If the data is not a lattice, then an error is raised:
sage: elms = [1,2,3,4,5,6,7] sage: rels = [[1,2],[3,4],[4,5],[2,5]] sage: LatticePoset((elms, rels)) Traceback (most recent call last): ... ValueError: not a meet-semilattice: no bottom element
Creating a facade lattice:
sage: L = LatticePoset([[1,2],[3],[3]], facade = True) sage: L.category() Category of facade finite enumerated lattice posets sage: parent(L[0]) Integer Ring sage: TestSuite(L).run(skip = ['_test_an_element']) # is_parent_of is not yet implemented
- sage.combinat.posets.lattices.MeetSemilattice(data=None, *args, **options)#
Construct a meet semi-lattice from various forms of input data.
INPUT:
data
,*args
,**options
– data and options that will be passed down toPoset()
to construct a poset that is also a meet semilattice.
See also
EXAMPLES:
Using data that defines a poset:
sage: MeetSemilattice([[1,2],[3],[3]]) Finite meet-semilattice containing 3 elements sage: MeetSemilattice([[1,2],[3],[3]], cover_relations = True) Finite meet-semilattice containing 3 elements
Using a previously constructed poset:
sage: P = Poset([[1,2],[3],[3]]) sage: L = MeetSemilattice(P); L Finite meet-semilattice containing 3 elements sage: type(L) <class 'sage.combinat.posets.lattices.FiniteMeetSemilattice_with_category'>
If the data is not a lattice, then an error is raised:
sage: MeetSemilattice({'a': ['b', 'c'], 'b': ['d', 'e'], ....: 'c': ['d', 'e'], 'd': ['f'], 'e': ['f']}) Traceback (most recent call last): ... LatticeError: no meet for e and d