Kirillov-Reshetikhin Tableaux#
Kirillov-Reshetikhin tableaux are rectangular tableaux with \(r\) rows and \(s\) columns that naturally arise under the bijection between rigged configurations and tableaux [RigConBijection]. They are in bijection with the elements of the Kirillov-Reshetikhin crystal \(B^{r,s}\) under the (inverse) filling map [OSS13] [SS2015]. They do not have to satisfy the semistandard row or column restrictions. These tensor products are the result from the bijection from rigged configurations [RigConBijection].
For more information, see KirillovReshetikhinTableaux
and TensorProductOfKirillovReshetikhinTableaux
.
AUTHORS:
Travis Scrimshaw (2012-01-03): Initial version
Travis Scrimshaw (2012-11-14): Added bijection to KR crystals
REFERENCES:
- OSS13
Masato Okado, Reiho Sakamoto, and Anne Schilling. Affine crystal structure on rigged configurations of type \(D_n^{(1)}\). J. Algebraic Combinatorics, 37 (2013). 571-599. arXiv 1109.3523.
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxBn(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal
Kirillov-Reshetkhin tableaux \(B^{n,s}\) of type \(B_n^{(1)}\).
- Element#
alias of
KRTableauxSpinElement
- from_kirillov_reshetikhin_crystal(krc)#
Construct an element of
self
from the Kirillov-Reshetikhin crystal elementkrc
.EXAMPLES:
sage: KR = crystals.KirillovReshetikhin(['B',3,1], 3, 3, model='KR') sage: C = crystals.KirillovReshetikhin(['B',3,1], 3, 3, model='KN') sage: krc = C.module_generators[1].f_string([3,2,3,1,3,3]); krc [++-, [[2], [0], [-3]]] sage: KR.from_kirillov_reshetikhin_crystal(krc) [[1, 1, 2], [2, 2, -3], [-3, -3, -1]]
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxDTwistedSpin(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle
Kirillov-Reshetikhin tableaux \(B^{r,s}\) of type \(D_n^{(2)}\) with \(r = n\).
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 2], 1, 1, model='KR') sage: KRT.cardinality() 8 sage: KRC = crystals.KirillovReshetikhin(['D', 4, 2], 1, 1, model='KN') sage: KRT.cardinality() == KRC.cardinality() True
- Element#
alias of
KRTableauxSpinElement
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
Kirillov-Reshetkhin tableaux \(B^{r,s}\) whose module generator is a single \(r \times s\) rectangle.
These are Kirillov-Reshetkhin tableaux \(B^{r,s}\) of type:
\(A_n^{(1)}\) for all \(1 \leq r \leq n\),
\(C_n^{(1)}\) when \(r = n\).
- from_kirillov_reshetikhin_crystal(krc)#
Construct a
KirillovReshetikhinTableauxElement
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR') sage: C = crystals.KirillovReshetikhin(['A',4,1], 2, 1, model='KN') sage: krc = C(4,3); krc [[3], [4]] sage: KRT.from_kirillov_reshetikhin_crystal(krc) [[3], [4]]
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpin(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle
Kirillov-Reshetikhin tableaux \(B^{r,s}\) of type \(D_n^{(1)}\) with \(r = n, n-1\).
- Element#
alias of
KRTableauxSpinElement
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement(parent, list, **options)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
Kirillov-Reshetikhin tableau for spinors.
Here we are in the embedding \(B(\Lambda_n) \hookrightarrow B(2 \Lambda_n)\), so \(e_i\) and \(f_i\) act by \(e_i^2\) and \(f_i^2\) respectively for all \(i \neq 0\). We do this so our columns are full width (as opposed to half width and/or uses a \(\pm\) representation).
- classical_weight()#
Return the classical weight of
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 1, model='KR') sage: KRT.module_generators[0].classical_weight() (1/2, 1/2, 1/2, 1/2)
- e(i)#
Calculate the action of \(e_i\) on
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR') sage: KRT(-1, -4, 3, 2).e(1) [[1], [3], [-4], [-2]] sage: KRT(-1, -4, 3, 2).e(3)
- epsilon(i)#
Compute \(\varepsilon_i\) of
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR') sage: KRT(-1, -4, 3, 2).epsilon(1) 1 sage: KRT(-1, -4, 3, 2).epsilon(3) 0
- f(i)#
Calculate the action of \(f_i\) on
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR') sage: KRT(-1, -4, 3, 2).f(1) sage: KRT(-1, -4, 3, 2).f(3) [[2], [4], [-3], [-1]]
- left_split()#
Return the image of
self
under the left column splitting map.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 3, model='KR') sage: elt = KRT(-3,-4,2,1,-3,-4,2,1,-2,-4,3,1); elt.pp() 1 1 1 2 2 3 -4 -4 -4 -3 -3 -2 sage: elt.left_split().pp() 1 (X) 1 1 2 2 3 -4 -4 -4 -3 -3 -2
- phi(i)#
Compute \(\varphi_i\) of
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR') sage: KRT(-1, -4, 3, 2).phi(1) 0 sage: KRT(-1, -4, 3, 2).phi(3) 1
- to_array(rows=True)#
Return a 2-dimensional array representation of this Kirillov-Reshetikhin element.
If the output is in rows, then it outputs the top row first (in the English convention) from left to right.
For example: if the reading word is \([2, 1, 4, 3]\), so as a \(2 \times 2\) tableau:
1 3 2 4
we output
[[1, 3], [2, 4]]
.If the output is in columns, then it outputs the leftmost column first with the bottom element first. In other words this parses the reading word into its columns.
Continuing with the previous example, the output would be
[[2, 1], [4, 3]]
.INPUT:
rows
– (Default:True
) Set toTrue
if the resulting array is by row, otherwise it is by column.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 3, model='KR') sage: elt = KRT(-3,-4,2,1,-3,-4,2,1,-2,-4,3,1) sage: elt.to_array() [[1, 1, 1], [2, 2, 3], [-4, -4, -4], [-3, -3, -2]] sage: elt.to_array(False) [[-3, -4, 2, 1], [-3, -4, 2, 1], [-2, -4, 3, 1]]
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeBox(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical
Kirillov-Reshetikhin tableaux \(B^{r,s}\) of type:
\(A_{2n}^{(2)}\) for all \(r \leq n\),
\(D_{n+1}^{(2)}\) for all \(r < n\),
\(D_4^{(3)}\) for \(r = 1\).
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRC(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
Kirillov-Reshetikhin tableaux \(B^{r,s}\) constructed from rigged configurations under the bijection \(\Phi\).
Warning
The Kashiwara-Nakashima version is not implemented due to the non-trivial multiplicities of classical components, so
classical_decomposition()
does not work.- Element#
alias of
KRTableauxTypeFromRCElement
- module_generators()#
The module generators of
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR') sage: KRT.module_generators ([[1], [2]], [[1], [0]], [[1], [E]], [[E], [E]])
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement(parent, list, **options)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
A Kirillov-Reshetikhin tableau constructed from rigged configurations under the bijection \(\Phi\).
- e(i)#
Perform the action of \(e_i\) on
self
.Todo
Implement a direct action of \(e_0\) without moving to rigged configurations.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR') sage: KRT.module_generators[0].e(0) [[2], [E]]
- epsilon(i)#
Compute \(\varepsilon_i\) of
self
.Todo
Implement a direct action of \(\epsilon_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 2, model='KR') sage: KRT.module_generators[0].epsilon(0) 6
- f(i)#
Perform the action of \(f_i\) on
self
.Todo
Implement a direct action of \(f_0\) without moving to rigged configurations.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR') sage: KRT.module_generators[0].f(0) sage: KRT.module_generators[3].f(0) [[1], [0]]
- phi(i)#
Compute \(\varphi_i\) of
self
.Todo
Compute \(\phi_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 2, model='KR') sage: KRT.module_generators[0].phi(0) 0
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
Kirillov-Reshetikhin tableaux \(B^{r,s}\) of type:
\(C_n^{(1)}\) for \(1 \leq r < n\),
\(A_{2n}^{(2)\dagger}\) for \(1 \leq r \leq n\).
- from_kirillov_reshetikhin_crystal(krc)#
Construct an element of
self
from the Kirillov-Reshetikhin crystal elementkrc
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['C',4,1], 2, 3, model='KR') sage: C = crystals.KirillovReshetikhin(['C',4,1], 2, 3, model='KN') sage: krc = C(4,3); krc [[3], [4]] sage: KRT.from_kirillov_reshetikhin_crystal(krc) [[3, -2, 1], [4, -1, 2]]
- class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical(cartan_type, r, s)#
Bases:
sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
Kirillov-Reshetkihn tableaux \(B^{r,s}\) of type:
\(D_n^{(1)}\) for all \(1 \leq r < n-1\),
\(B_n^{(1)}\) for all \(1 \leq r < n\),
\(A_{2n-1}^{(2)}\) for all \(1 \leq r \leq n\).
- from_kirillov_reshetikhin_crystal(krc)#
Construct an element of
self
from the Kirillov-Reshetikhin crystal elementkrc
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR') sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KN') sage: krc = C(4,3); krc [[3], [4]] sage: KRT.from_kirillov_reshetikhin_crystal(krc) [[3, -2, 1], [4, -1, 2]]
- class sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux(cartan_type, r, s)#
Bases:
sage.combinat.crystals.tensor_product.CrystalOfWords
Kirillov-Reshetikhin tableaux.
Kirillov-Reshetikhin tableaux are rectangular tableaux with \(r\) rows and \(s\) columns that naturally arise under the bijection between rigged configurations and tableaux [RigConBijection]. They are in bijection with the elements of the Kirillov-Reshetikhin crystal \(B^{r,s}\) under the (inverse) filling map.
Whenever \(B^{r,s} \cong B(s\Lambda_r)\) as a classical crystal (which is the case for \(B^{r,s}\) in type \(A_n^{(1)}\), \(B^{n,s}\) in type \(C_n^{(1)}\) and \(D_{n+1}^{(2)}\), \(B^{n,s}\) and \(B^{n-1,s}\) in type \(D_n^{(1)}\)) then the filling map is trivial.
For \(B^{r,s}\) in:
type \(D_n^{(1)}\) when \(r \leq n-2\),
type \(B_n^{(1)}\) when \(r < n\),
type \(A_{2n-1}^{(2)}\) for all \(r\),
the filling map is defined in [OSS2011].
For the spinor cases in type \(D_n^{(1)}\), the crystal \(B^{k,s}\) where \(k = n-1, n\), is isomorphic as a classical crystal to \(B(s\Lambda_k)\), and here we consider the Kirillov-Reshetikhin tableaux as living in \(B(2s \Lambda_k)\) under the natural doubling map. In this case, the crystal operators \(e_i\) and \(f_i\) act as \(e_i^2\) and \(f_i^2\) respectively. See [BijectionDn].
For the spinor case in type \(B_n^{(1)}\), the crystal \(B^{n,s}\), we consider the images under the natural doubling map into \(B^{n,2s}\). The classical components of this crystal are now given by removing \(2 \times 2\) boxes. The filling map is the same as below (see the non-spin type \(C_n^{(1)}\)).
For \(B^{r,s}\) in:
type \(C_n^{(1)}\) when \(r < n\),
type \(A_{2n}^{(2)\dagger}\) for all \(r\),
the filling map is given as follows. Suppose we are considering the (classically) highest weight element in the classical component \(B(\lambda)\). Then we fill it in with the horizontal dominoes \([\bar{\imath}, i]\) in the \(i\)-th row from the top (in English notation) and reordering the columns so that they are increasing. Recall from above that \(B^{n,s} \cong B(s\Lambda_n)\) in type \(C^{(1)}_n\).
For \(B^{r,s}\) in:
type \(A_{2n}^{(2)}\) for all \(r\),
type \(D_{n+1}^{(2)}\) when \(r < n\),
type \(D_4^{(3)}\) when \(r = 1\),
the filling map is the same as given in [OSS2011] except for the rightmost column which is given by the column \([1, 2, \ldots, k, \emptyset, \ldots \emptyset]\) where \(k = (r+x-1)/2\) in Step 3 of [OSS2011].
For the spinor case in type \(D_{n+1}^{(2)}\), the crystal \(B^{n,s}\), we define the filling map in the same way as in type \(D_n^{(1)}\).
Note
The filling map and classical decompositions in non-spinor cases can be classified by how the special node \(0\) connects with the corresponding classical diagram.
The classical crystal structure is given by the usual Kashiwara-Nakashima tableaux rules. That is to embed this into \(B(\Lambda_1)^{\otimes n s}\) by using the reading word and then applying the classical crystal operator. The affine crystal structure is given by converting to the corresponding KR crystal element, performing the affine crystal operator, and pulling back to a KR tableau.
For more information about the bijection between rigged configurations and tensor products of Kirillov-Reshetikhin tableaux, see
TensorProductOfKirillovReshetikhinTableaux
.Note
The tableaux for all non-simply-laced types are provably correct if the bijection with
rigged configurations
holds. Therefore this is currently only proven for \(B^{r,1}\) or \(B^{1,s}\) and in general for types \(A_n^{(1)}\) and \(D_n^{(1)}\).INPUT:
cartan_type
– the Cartan typer
– the Dynkin diagram index (typically the number of rows)s
– the number of columns
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR') sage: elt = KRT(4, 3); elt [[3], [4]] sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 1, model='KR') sage: elt = KRT(-1, 1); elt [[1], [-1]]
We can create highest weight crystals from a given shape or weight:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR') sage: KRT.module_generator(shape=[1,1]) [[1, 1], [2, -1]] sage: KRT.module_generator(column_shape=[2]) [[1, 1], [2, -1]] sage: WS = RootSystem(['D',4,1]).weight_space() sage: KRT.module_generator(weight=WS.sum_of_terms([[0,-2],[2,1]])) [[1, 1], [2, -1]] sage: WSC = RootSystem(['D',4]).weight_space() sage: KRT.module_generator(classical_weight=WSC.fundamental_weight(2)) [[1, 1], [2, -1]]
We can go between
KashiwaraNakashimaTableaux()
andKirillovReshetikhinTableaux
elements:sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR') sage: elt = KRCrys(3, 2); elt [[2], [3]] sage: k = KRTab(elt); k [[2, 1], [3, -1]] sage: KRCrys(k) [[2], [3]]
We check that the classical weights in the classical decompositions agree in a few different type:
sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR') sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab) True sage: KRCrys = crystals.KirillovReshetikhin(['B', 3, 1], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['B', 3, 1], 2, 2, model='KR') sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab) True sage: KRCrys = crystals.KirillovReshetikhin(['C', 3, 1], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['C', 3, 1], 2, 2, model='KR') sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab) True sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 2], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 2], 2, 2, model='KR') sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab) True sage: KRCrys = crystals.KirillovReshetikhin(['A', 4, 2], 2, 2, model='KN') sage: KRTab = crystals.KirillovReshetikhin(['A', 4, 2], 2, 2, model='KR') sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab) True
- Element#
alias of
KirillovReshetikhinTableauxElement
- classical_decomposition()#
Return the classical crystal decomposition of
self
.EXAMPLES:
sage: crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR').classical_decomposition() The crystal of tableaux of type ['D', 4] and shape(s) [[], [1, 1], [2, 2]]
- from_kirillov_reshetikhin_crystal(krc)#
Construct an element of
self
from the Kirillov-Reshetikhin crystal elementkrc
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR') sage: C = crystals.KirillovReshetikhin(['A',4,1], 2, 1, model='KN') sage: krc = C(4,3); krc [[3], [4]] sage: KRT.from_kirillov_reshetikhin_crystal(krc) [[3], [4]]
- kirillov_reshetikhin_crystal()#
Return the corresponding KR crystal in the
Kashiwara-Nakashima model
.EXAMPLES:
sage: crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR').kirillov_reshetikhin_crystal() Kirillov-Reshetikhin crystal of type ['A', 4, 1] with (r,s)=(2,1)
- module_generator(i=None, **options)#
Return the specified module generator.
INPUT:
i
– the index of the module generator
We can also get a module generator by using one of the following optional arguments:
shape
– the associated shapecolumn_shape
– the shape given as columns (a column of length \(k\) correspond to a classical weight \(\omega_k\))weight
– the weightclassical_weight
– the classical weight
If no arguments are specified, then return the unique module generator of classical weight \(s \Lambda_r\).
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR') sage: KRT.module_generator(1) [[1, 1], [2, -1]] sage: KRT.module_generator(shape=[1,1]) [[1, 1], [2, -1]] sage: KRT.module_generator(column_shape=[2]) [[1, 1], [2, -1]] sage: WS = RootSystem(['D',4,1]).weight_space() sage: KRT.module_generator(weight=WS.sum_of_terms([[0,-2],[2,1]])) [[1, 1], [2, -1]] sage: WSC = RootSystem(['D',4]).weight_space() sage: KRT.module_generator(classical_weight=WSC.fundamental_weight(2)) [[1, 1], [2, -1]] sage: KRT.module_generator() [[1, 1], [2, 2]] sage: KRT = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR') sage: KRT.module_generator() [[1, 1], [2, 2]]
- r()#
Return the value \(r\) for this tableaux class which corresponds to the number of rows.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR') sage: KRT.r() 2
- s()#
Return the value \(s\) for this tableaux class which corresponds to the number of columns.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR') sage: KRT.s() 1
- tensor(*crystals, **options)#
Return the tensor product of
self
withcrystals
.If
crystals
is a list of (a tensor product of) KR tableaux, this returns aTensorProductOfKirillovReshetikhinTableaux
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR') sage: TP = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1,3],[3,1]]) sage: K.tensor(TP, K) Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and factor(s) ((2, 2), (1, 3), (3, 1), (2, 2)) sage: C = crystals.KirillovReshetikhin(['A',3,1], 3, 1, model='KN') sage: K.tensor(K, C) Full tensor product of the crystals [Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2), Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2), Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(3,1)]
- class sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement(parent, list, **options)#
Bases:
sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
A Kirillov-Reshetikhin tableau.
For more information, see
KirillovReshetikhinTableaux
andTensorProductOfKirillovReshetikhinTableaux
.- classical_weight()#
Return the classical weight of
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: elt = KRT(3,2,-1,1); elt [[2, 1], [3, -1]] sage: elt.classical_weight() (0, 1, 1, 0)
- e(i)#
Perform the action of \(e_i\) on
self
.Todo
Implement a direct action of \(e_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: KRT.module_generators[0].e(0) [[-2, 1], [-1, -1]]
- epsilon(i)#
Compute \(\varepsilon_i\) of
self
.Todo
Implement a direct action of \(\varepsilon_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: KRT.module_generators[0].epsilon(0) 2
- f(i)#
Perform the action of \(f_i\) on
self
.Todo
Implement a direct action of \(f_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: KRT.module_generators[0].f(0) [[1, 1], [2, -1]]
- left_split()#
Return the image of
self
under the left column splitting map.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR') sage: mg = KRT.module_generators[1]; mg.pp() 1 -2 1 2 -1 2 sage: ls = mg.left_split(); ls.pp() 1 (X) -2 1 2 -1 2 sage: ls.parent() Tensor product of Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and factor(s) ((2, 1), (2, 2))
- phi(i)#
Compute \(\varphi_i\) of
self
.Todo
Compute \(\varphi_0\) without moving to KR crystals.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: KRT.module_generators[0].phi(0) 2
- pp()#
Pretty print
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR') sage: elt = KRT(2, 1, 4, 3); elt [[1, 3], [2, 4]] sage: elt.pp() 1 3 2 4
- right_split()#
Return the image of
self
under the right column splitting map.Let \(\ast\) denote the
Lusztig involution
, and \(\mathrm{ls}\) as theleft splitting map
. The right splitting map is defined as \(\mathrm{rs} := \ast \circ \mathrm{ls} \circ \ast\).EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR') sage: mg = KRT.module_generators[1]; mg.pp() 1 -2 1 2 -1 2 sage: ls = mg.right_split(); ls.pp() -2 1 (X) 1 -1 2 2 sage: ls.parent() Tensor product of Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and factor(s) ((2, 2), (2, 1))
- to_array(rows=True)#
Return a 2-dimensional array representation of this Kirillov-Reshetikhin element.
If the output is in rows, then it outputs the top row first (in the English convention) from left to right.
For example: if the reading word is \([2, 1, 4, 3]\), so as a \(2 \times 2\) tableau:
1 3 2 4
we output
[[1, 3], [2, 4]]
.If the output is in columns, then it outputs the leftmost column first with the bottom element first. In other words this parses the reading word into its columns.
Continuing with the previous example, the output would be
[[2, 1], [4, 3]]
.INPUT:
rows
– (Default:True
) Set toTrue
if the resulting array is by row, otherwise it is by column.
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR') sage: elt = KRT(2, 1, 4, 3) sage: elt.to_array() [[1, 3], [2, 4]] sage: elt.to_array(False) [[2, 1], [4, 3]]
- to_classical_highest_weight(index_set=None)#
Return the classical highest weight element corresponding to
self
.INPUT:
index_set
– (Default:None
) Return the highest weight with respect to the index set. IfNone
is passed in, then this uses the classical index set.
OUTPUT:
A pair
[H, f_str]
whereH
is the highest weight element andf_str
is a list of \(a_i\) of \(f_{a_i}\) needed to reachH
.EXAMPLES:
sage: KRTab = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: elt = KRTab(3,2,-1,1); elt [[2, 1], [3, -1]] sage: elt.to_classical_highest_weight() [[[1, 1], [2, -1]], [1, 2]]
- to_kirillov_reshetikhin_crystal()#
Construct a
KashiwaraNakashimaTableaux()
element fromself
.We construct the Kirillov-Reshetikhin crystal element as follows:
Determine the shape \(\lambda\) of the KR crystal from the weight.
Determine a path \(e_{i_1} e_{i_2} \cdots e_{i_k}\) to the highest weight.
Apply \(f_{i_k} \cdots f_{i_2} f_{i_1}\) to a highest weight KR crystal of shape \(\lambda\).
EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: elt = KRT(3,2,-1,1); elt [[2, 1], [3, -1]] sage: elt.to_kirillov_reshetikhin_crystal() [[2], [3]]
- to_tableau()#
Return a
Tableau
object ofself
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR') sage: elt = KRT(2, 1, 4, 3); elt [[1, 3], [2, 4]] sage: t = elt.to_tableau(); t [[1, 3], [2, 4]] sage: type(t) <class 'sage.combinat.tableau.Tableaux_all_with_category.element_class'>
- weight()#
Return the weight of
self
.EXAMPLES:
sage: KR = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR') sage: KR.module_generators[1].weight() -2*Lambda[0] + Lambda[2]