Subword complex#
Fix a Coxeter system \((W,S)\). The subword complex \(\mathcal{SC}(Q,w)\) associated to a word \(Q \in S^*\) and an element \(w \in W\) is the simplicial complex whose ground set is the set of positions in \(Q\) and whose facets are complements of sets of positions defining a reduced expression for \(w\).
A subword complex is a shellable sphere if and only if the Demazure product of \(Q\) equals \(w\), otherwise it is a shellable ball.
The code is optimized to be used with ReflectionGroup, it works as well with CoxeterGroup, but many methods fail for WeylGroup.
EXAMPLES:
sage: W = ReflectionGroup(['A',3]); I = list(W.index_set()) # optional - gap3
sage: Q = I + W.w0.coxeter_sorting_word(I); Q # optional - gap3
[1, 2, 3, 1, 2, 3, 1, 2, 1]
sage: S = SubwordComplex(Q,W.w0) # optional - gap3
sage: for F in S: print("{} {}".format(F, F.root_configuration())) # optional - gap3
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]
(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]
Testing that the implementation also works with CoxeterGroup:
sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I); Q
[1, 2, 3, 1, 2, 3, 1, 2, 1]
sage: S = SubwordComplex(Q,W.w0); S
Subword complex of type ['A', 3] for Q = (1, 2, 3, 1, 2, 3, 1, 2, 1) and pi = [1, 2, 3, 1, 2, 1]
sage: P = S.increasing_flip_poset(); P; len(P.cover_relations())
Finite poset containing 14 elements
21
The root configuration works:
sage: for F in S: print("{} {}".format(F, F.root_configuration()))
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]
(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]
And the weight configuration also works:
sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2])
sage: F.extended_weight_configuration()
[(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)]
sage: F.extended_weight_configuration(coefficients=(1,2))
[(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]
One finally can compute the brick polytope, using all functionality on weight configurations, though it does not realize to live in real space:
sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I)
sage: S = SubwordComplex(Q,W.w0)
sage: S.brick_polytope()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 14 vertices
sage: W = CoxeterGroup(['H',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I)
sage: S = SubwordComplex(Q,W.w0)
sage: S.brick_polytope()
doctest:...: RuntimeWarning: the polytope is build with rational vertices
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices
AUTHORS:
Christian Stump: initial version
Vincent Pilaud: greedy flip algorithm, minor improvements, documentation
REFERENCES:
- KnuMil
Knutson and Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1):161-176, 2004.
- PilStu(1,2)
Pilaud and Stump. Brick polytopes of spherical subword complexes and generalized associahedra. Adv. Math. 276:1-61, 2015.
- class sage.combinat.subword_complex.SubwordComplex(Q, w, algorithm='inductive')#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.topology.simplicial_complex.SimplicialComplex
Fix a Coxeter system \((W,S)\). The subword complex \(\mathcal{SC}(Q,w)\) associated to a word \(Q \in S^*\) and an element \(w \in W\) is the simplicial complex whose ground set is the set of positions in \(Q\) and whose facets are complements of sets of positions defining a reduced expression for \(w\).
A subword complex is a shellable sphere if and only if the Demazure product of \(Q\) equals \(w\), otherwise it is a shellable ball.
Warning
This implementation only works for groups build using
CoxeterGroup
, and does not work with groups build usingWeylGroup
.EXAMPLES:
As an example, dual associahedra are subword complexes in type \(A_{n-1}\) given by the word \([1, \dots, n, 1, \dots, n, 1, \dots, n-1, \dots, 1, 2, 1]\) and the permutation \(w_0\).
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w); SC # optional - gap3 Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1] sage: SC.facets() # optional - gap3 [(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w); SC Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1] sage: SC.facets() [(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
REFERENCES: [KnuMil], [PilStu]
- Element#
alias of
SubwordComplexFacet
- barycenter()#
Return the barycenter of the brick polytope of
self
.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.barycenter() # optional - gap3 (2/3, 4/3) sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.barycenter() (4/3, 8/3)
- brick_fan()#
Return the brick fan of
self
.It is the normal fan of the brick polytope of
self
. It is formed by the cones generated by the weight configurations of the facets ofself
.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.brick_fan() # optional - gap3 Rational polyhedral fan in 2-d lattice N sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.brick_fan() Rational polyhedral fan in 2-d lattice N
- brick_polytope(coefficients=None)#
Return the brick polytope of
self
.This polytope is the convex hull of the brick vectors of
self
.INPUT:
coefficients – (optional) a list of coefficients used to scale the fundamental weights
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: X = SC.brick_polytope(); X # optional - gap3 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices sage: Y = SC.brick_polytope(coefficients=[1,2]); Y # optional - gap3 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices sage: X == Y # optional - gap3 False sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: X = SC.brick_polytope(); X A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices sage: W = ReflectionGroup(['H',3]) # optional - gap3 sage: c = W.index_set(); Q = c + tuple(W.w0.coxeter_sorting_word(c)) # optional - gap3 sage: SC = SubwordComplex(Q,W.w0) # optional - gap3 sage: SC.brick_polytope() # optional - gap3 A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices
- brick_vectors(coefficients=None)#
Return the list of all brick vectors of facets of
self
.INPUT:
coefficients – (optional) a list of coefficients used to scale the fundamental weights
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.brick_vectors() # optional - gap3 [(5/3, 7/3), (5/3, 1/3), (2/3, 7/3), (-1/3, 4/3), (-1/3, 1/3)] sage: SC.brick_vectors(coefficients=(1,2)) # optional - gap3 [(7/3, 11/3), (7/3, 2/3), (4/3, 11/3), (-2/3, 5/3), (-2/3, 2/3)] sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.brick_vectors() [(10/3, 14/3), (10/3, 2/3), (4/3, 14/3), (-2/3, 8/3), (-2/3, 2/3)] sage: SC.brick_vectors(coefficients=(1,2)) [(14/3, 22/3), (14/3, 4/3), (8/3, 22/3), (-4/3, 10/3), (-4/3, 4/3)]
- cartan_type()#
Return the Cartan type of
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.cartan_type() # optional - gap3 ['A', 2] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.cartan_type() ['A', 2]
- cover_relations(label=False)#
Return the set of cover relations in the associated poset.
INPUT:
label – boolean (default
False
) whether or not to label the cover relations by the position of flip
OUTPUT:
a list of pairs of facets
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: sorted(SC.cover_relations()) # optional - gap3 [((0, 1), (0, 4)), ((0, 1), (1, 2)), ((0, 4), (3, 4)), ((1, 2), (2, 3)), ((2, 3), (3, 4))] sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: sorted(SC.cover_relations()) [((0, 1), (0, 4)), ((0, 1), (1, 2)), ((0, 4), (3, 4)), ((1, 2), (2, 3)), ((2, 3), (3, 4))]
- dimension()#
Return the dimension of
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.dimension() # optional - gap3 1 sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.dimension() 1
- facets()#
Return all facets of
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.facets() # optional - gap3 [(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.facets() [(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
- greedy_facet(side='positive')#
Return the negative (or positive) greedy facet of
self
.This is the lexicographically last (or first) facet of
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.greedy_facet(side="positive") # optional - gap3 (0, 1) sage: SC.greedy_facet(side="negative") # optional - gap3 (3, 4) sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.greedy_facet(side="positive") (0, 1) sage: SC.greedy_facet(side="negative") (3, 4)
- group()#
Return the group associated to
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.group() # optional - gap3 Irreducible real reflection group of rank 2 and type A2 sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.group() Finite Coxeter group over Integer Ring with Coxeter matrix: [1 3] [3 1]
- increasing_flip_graph(label=True)#
Return the increasing flip graph of the subword complex.
OUTPUT:
a directed graph
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.increasing_flip_graph() # optional - gap3 Digraph on 5 vertices sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.increasing_flip_graph() Digraph on 5 vertices
- increasing_flip_poset()#
Return the increasing flip poset of the subword complex.
OUTPUT:
a poset
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.increasing_flip_poset() # optional - gap3 Finite poset containing 5 elements sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.increasing_flip_poset() Finite poset containing 5 elements
- interval(I, J)#
Return the interval [I,J] in the increasing flip graph subword complex.
INPUT:
I, J – two facets
OUTPUT:
a set of facets
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: F = SC([1,2]) # optional - gap3 sage: SC.interval(F, F) # optional - gap3 {(1, 2)} sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: F = SC([1,2]) sage: SC.interval(F, F) {(1, 2)}
- is_ball()#
Return
True
if the subword complexself
is a ball.This is the case if and only if it is not a sphere.
EXAMPLES:
sage: W = ReflectionGroup(['A',3]) # optional - gap3 sage: w = W.from_reduced_word([2,3,2]) # optional - gap3 sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3 sage: SC.is_ball() # optional - gap3 False sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3 sage: SC.is_ball() # optional - gap3 True sage: W = CoxeterGroup(['A',3]) sage: w = W.from_reduced_word([2,3,2]) sage: SC = SubwordComplex([3,2,3,2,3], w) sage: SC.is_ball() False
- is_double_root_free()#
Return
True
ifself
is double-root-free.This means that the root configurations of all facets do not contain a root twice.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.is_double_root_free() # optional - gap3 True sage: SC = SubwordComplex([1,1,2,2,1,1], w) # optional - gap3 sage: SC.is_double_root_free() # optional - gap3 True sage: SC = SubwordComplex([1,2,1,2,1,2], w) # optional - gap3 sage: SC.is_double_root_free() # optional - gap3 False sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.is_double_root_free() True
- is_pure()#
Return
True
since all subword complexes are pure.EXAMPLES:
sage: W = ReflectionGroup(['A',3]) # optional - gap3 sage: w = W.from_reduced_word([2,3,2]) # optional - gap3 sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3 sage: SC.is_pure() # optional - gap3 True sage: W = CoxeterGroup(['A',3]) sage: w = W.from_reduced_word([2,3,2]) sage: SC = SubwordComplex([3,2,3,2,3], w) sage: SC.is_pure() True
- is_root_independent()#
Return
True
ifself
is root-independent.This means that the root configuration of any (or equivalently all) facets is linearly independent.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.is_root_independent() # optional - gap3 True sage: SC = SubwordComplex([1,2,1,2,1,2], W.w0) # optional - gap3 sage: SC.is_root_independent() # optional - gap3 False sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.is_root_independent() True
- is_sphere()#
Return
True
if the subword complexself
is a sphere.EXAMPLES:
sage: W = ReflectionGroup(['A',3]) # optional - gap3 sage: w = W.from_reduced_word([2,3,2]) # optional - gap3 sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3 sage: SC.is_sphere() # optional - gap3 True sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3 sage: SC.is_sphere() # optional - gap3 False sage: W = CoxeterGroup(['A',3]) sage: w = W.from_reduced_word([2,3,2]) sage: SC = SubwordComplex([3,2,3,2,3], w) sage: SC.is_sphere() True
- kappa_preimages()#
Return a dictionary containing facets of
self
as keys, and list of elements ofself.group()
as values.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: kappa = SC.kappa_preimages() # optional - gap3 sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in kappa[F]])) # optional - gap3 (0, 1) [[]] (0, 4) [[2], [2, 1]] (1, 2) [[1]] (2, 3) [[1, 2]] (3, 4) [[1, 2, 1]] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: kappa = SC.kappa_preimages() sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in kappa[F]])) (0, 1) [[]] (0, 4) [[2], [2, 1]] (1, 2) [[1]] (2, 3) [[1, 2]] (3, 4) [[1, 2, 1]]
- minkowski_summand(i)#
Return the \(i\) th Minkowski summand of
self
.INPUT:
\(i\) – an integer defining a position in the word \(Q\)
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3 sage: SC.minkowski_summand(1) # optional - gap3 A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex sage: W = CoxeterGroup(['A',2]) sage: SC = SubwordComplex([1,2,1,2,1], W.w0) sage: SC.minkowski_summand(1) A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex
- pi()#
Return the element in the Coxeter group associated to
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.pi().reduced_word() # optional - gap3 [1, 2, 1] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.pi().reduced_word() [1, 2, 1]
- word()#
Return the word in the simple generators associated to
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: SC.word() # optional - gap3 (1, 2, 1, 2, 1) sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: SC.word() (1, 2, 1, 2, 1)
- class sage.combinat.subword_complex.SubwordComplexFacet(parent, positions, facet_test=True)#
Bases:
sage.topology.simplicial_complex.Simplex
,sage.structure.element.Element
A facet of a subword complex.
Facets of the subword complex \(\mathcal{SC}(Q,w)\) are complements of sets of positions in \(Q\) defining a reduced expression for \(w\).
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3 sage: F = SC[0]; F # optional - gap3 (0, 1) sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1], w) sage: F = SC[0]; F (0, 1)
- brick_vector(coefficients=None)#
Return the brick vector of
self
.This is the sum of the weight vectors in the extended weight configuration.
INPUT:
coefficients – (optional) a list of coefficients used to scale the fundamental weights
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.extended_weight_configuration() # optional - gap3 [(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)] sage: F.brick_vector() # optional - gap3 (2/3, 7/3) sage: F.brick_vector(coefficients=[1,2]) # optional - gap3 (4/3, 11/3) sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]) sage: F.brick_vector() (4/3, 14/3) sage: F.brick_vector(coefficients=[1,2]) (8/3, 22/3)
- extended_root_configuration()#
Return the extended root configuration of
self
.Let \(Q = q_1 \dots q_m \in S^*\) and \(w \in W\). The extended root configuration of a facet \(I\) of \(\mathcal{SC}(Q,w)\) is the sequence \(\mathsf{r}(I, 1), \dots, \mathsf{r}(I, m)\) of roots defined by \(\mathsf{r}(I, k) = \Pi Q_{[k-1] \smallsetminus I} (\alpha_{q_k})\), where \(\Pi Q_{[k-1] \smallsetminus I}\) is the product of the simple reflections \(q_i\) for \(i \in [k-1] \smallsetminus I\) in this order.
The extended root configuration is used to perform flips efficiently.
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.extended_root_configuration() # optional - gap3 [(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.extended_root_configuration() [(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)]
- extended_weight_configuration(coefficients=None)#
Return the extended weight configuration of
self
.Let \(Q = q_1 \dots q_m \in S^*\) and \(w \in W\). The extended weight configuration of a facet \(I\) of \(\mathcal{SC}(Q,w)\) is the sequence \(\mathsf{w}(I, 1), \dots, \mathsf{w}(I, m)\) of weights defined by \(\mathsf{w}(I, k) = \Pi Q_{[k-1] \smallsetminus I} (\omega_{q_k})\), where \(\Pi Q_{[k-1] \smallsetminus I}\) is the product of the simple reflections \(q_i\) for \(i \in [k-1] \smallsetminus I\) in this order.
The extended weight configuration is used to compute the brick vector.
INPUT:
coefficients – (optional) a list of coefficients used to scale the fundamental weights
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]) # optional - gap3 sage: F.extended_weight_configuration() # optional - gap3 [(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)] sage: F.extended_weight_configuration(coefficients=(1,2)) # optional - gap3 [(2/3, 1/3), (2/3, 4/3), (-1/3, 1/3), (2/3, 4/3), (-1/3, 1/3)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]) sage: F.extended_weight_configuration() [(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)] sage: F.extended_weight_configuration(coefficients=(1,2)) [(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]
- flip(i, return_position=False)#
Return the facet obtained after flipping position
i
inself
.INPUT:
i
– position in the word \(Q\) (integer).return_position
– boolean (default:False
) tells whether the new position should be returned as well.
OUTPUT:
The new subword complex facet.
The new position if
return_position
isTrue
.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.flip(1) # optional - gap3 (2, 3) sage: F.flip(1, return_position=True) # optional - gap3 ((2, 3), 3) sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.flip(1) (2, 3) sage: F.flip(1, return_position=True) ((2, 3), 3)
- is_vertex()#
Return
True
ifself
is a vertex of the brick polytope ofself.parent
.A facet is a vertex of the brick polytope if its root cone is pointed. Note that this property is always satisfied for root-independent subword complexes.
See also
EXAMPLES:
sage: W = ReflectionGroup(['A',1]) # optional - gap3 sage: w = W.from_reduced_word([1]) # optional - gap3 sage: SC = SubwordComplex([1,1,1],w) # optional - gap3 sage: F = SC([0,1]); F.is_vertex() # optional - gap3 True sage: F = SC([0,2]); F.is_vertex() # optional - gap3 False sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1,2,1],w) # optional - gap3 sage: F = SC([0,1,2,3]); F.is_vertex() # optional - gap3 True sage: F = SC([0,1,2,6]); F.is_vertex() # optional - gap3 False sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1,2,1],w) sage: F = SC([0,1,2,3]); F.is_vertex() True sage: F = SC([0,1,2,6]); F.is_vertex() False
- kappa_preimage()#
Return the fiber of
self
under the \(\kappa\) map.The \(\kappa\) map sends an element \(w \in W\) to the unique facet of \(I \in \mathcal{SC}(Q,w)\) such that the root configuration of \(I\) is contained in \(w(\Phi^+)\). In other words, \(w\) is in the preimage of
self
under \(\kappa\) if and only if \(w^{-1}\) sends every root in the root configuration to a positive root.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.kappa_preimage() # optional - gap3 [(1,4)(2,3)(5,6)] sage: F = SC([0,4]); F # optional - gap3 (0, 4) sage: F.kappa_preimage() # optional - gap3 [(1,3)(2,5)(4,6), (1,2,6)(3,4,5)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.kappa_preimage() [ [-1 1] [ 0 1] ] sage: F = SC([0,4]); F (0, 4) sage: F.kappa_preimage() [ [ 1 0] [-1 1] [ 1 -1], [-1 0] ]
- plot(list_colors=None, labels=[], thickness=3, fontsize=14, shift=(0, 0), compact=False, roots=True, **args)#
In type \(A\) or \(B\), plot a pseudoline arrangement representing the facet
self
.Pseudoline arrangements are graphical representations of facets of types A or B subword complexes.
INPUT:
list_colors
– list (default:[]
) to change the colors of the pseudolines.labels
– list (default:[]
) to change the labels of the pseudolines.thickness
– integer (default:3
) for the thickness of the pseudolines.fontsize
– integer (default:14
) for the size of the font used for labels.shift
– couple of coordinates (default:(0,0)
) to change the origin.compact
– boolean (default:False
) to require a more compact representation.roots
– boolean (default:True
) to print the extended root configuration.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F.plot() # optional - gap3 Graphics object consisting of 26 graphics primitives sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F.plot() Graphics object consisting of 26 graphics primitives sage: W = ReflectionGroup(['B',3]) # optional - gap3 sage: c = W.from_reduced_word([1,2,3]) # optional - gap3 sage: Q = c.reduced_word()*2 + W.w0.coxeter_sorting_word(c) # optional - gap3 sage: SC = SubwordComplex(Q, W.w0) # optional - gap3 sage: F = SC[15]; F.plot() # optional - gap3 Graphics object consisting of 52 graphics primitives
REFERENCES: [PilStu]
- root_cone()#
Return the polyhedral cone generated by the root configuration of
self
.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',1]) # optional - gap3 sage: w = W.from_reduced_word([1]) # optional - gap3 sage: SC = SubwordComplex([1,1,1],w) # optional - gap3 sage: F = SC([0,2]); F.root_cone() # optional - gap3 1-d cone in 1-d lattice N sage: W = CoxeterGroup(['A',1]) sage: w = W.from_reduced_word([1]) sage: SC = SubwordComplex([1,1,1],w) sage: F = SC([0,2]); F.root_cone() 1-d cone in 1-d lattice N
- root_configuration()#
Return the root configuration of
self
.Let \(Q = q_1 \dots q_m \in S^*\) and \(w \in W\). The root configuration of a facet \(I = [i_1, \dots, i_n]\) of \(\mathcal{SC}(Q,w)\) is the sequence \(\mathsf{r}(I, i_1), \dots, \mathsf{r}(I, i_n)\) of roots defined by \(\mathsf{r}(I, k) = \Pi Q_{[k-1] \smallsetminus I} (\alpha_{q_k})\), where \(\Pi Q_{[k-1] \smallsetminus I}\) is the product of the simple reflections \(q_i\) for \(i \in [k-1] \smallsetminus I\) in this order.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.root_configuration() # optional - gap3 [(1, 1), (-1, 0)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.root_configuration() # optional - gap3 [(1, 1), (-1, 0)]
- show(*kwds, **args)#
Show the facet
self
.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F.show() # optional - gap3
- upper_root_configuration()#
Return the positive roots of the root configuration of
self
.EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.root_configuration() # optional - gap3 [(1, 1), (-1, 0)] sage: F.upper_root_configuration() # optional - gap3 [(1, 0)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.upper_root_configuration() [(1, 0)]
- weight_cone()#
Return the polyhedral cone generated by the weight configuration of
self
.See also
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: WC = F.weight_cone(); WC # optional - gap3 2-d cone in 2-d lattice N sage: WC.rays() # optional - gap3 N( 1, 2), N(-1, 1) in 2-d lattice N sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: WC = F.weight_cone(); WC 2-d cone in 2-d lattice N
- weight_configuration()#
Return the weight configuration of
self
.Let \(Q = q_1 \dots q_m \in S^*\) and \(w \in W\). The weight configuration of a facet \(I = [i_1, \dots, i_n]\) of \(\mathcal{SC}(Q,w)\) is the sequence \(\mathsf{w}(I, i_1), \dots, \mathsf{w}(I, i_n)\) of weights defined by \(\mathsf{w}(I, k) = \Pi Q_{[k-1] \smallsetminus I} (\omega_{q_k})\), where \(\Pi Q_{[k-1] \smallsetminus I}\) is the product of the simple reflections \(q_i\) for \(i \in [k-1] \smallsetminus I\) in this order.
EXAMPLES:
sage: W = ReflectionGroup(['A',2]) # optional - gap3 sage: w = W.from_reduced_word([1,2,1]) # optional - gap3 sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3 sage: F = SC([1,2]); F # optional - gap3 (1, 2) sage: F.weight_configuration() # optional - gap3 [(1/3, 2/3), (-1/3, 1/3)] sage: W = CoxeterGroup(['A',2]) sage: w = W.from_reduced_word([1,2,1]) sage: SC = SubwordComplex([1,2,1,2,1],w) sage: F = SC([1,2]); F (1, 2) sage: F.weight_configuration() [(2/3, 4/3), (-2/3, 2/3)]