Cartan types#
Todo
Why does sphinx complain if I use sections here?
Introduction
Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root systems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types are a standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).
Let us consider, for example, the Cartan type \(A_4\):
sage: T = CartanType(['A', 4])
sage: T
['A', 4]
It is the name of the following Dynkin diagram:
sage: DynkinDiagram(T)
O---O---O---O
1 2 3 4
A4
Note
For convenience, the following shortcuts are available:
sage: DynkinDiagram(['A',4])
O---O---O---O
1 2 3 4
A4
sage: DynkinDiagram('A4')
O---O---O---O
1 2 3 4
A4
sage: T.dynkin_diagram()
O---O---O---O
1 2 3 4
A4
See DynkinDiagram
for how to further manipulate Dynkin diagrams.
From this data (the Cartan datum), one can construct the associated root system:
sage: RootSystem(T)
Root system of type ['A', 4]
The associated Weyl group of \(A_n\) is the symmetric group \(S_{n+1}\):
sage: W = WeylGroup(T)
sage: W
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
sage: W.cardinality()
120
while the Lie algebra is \(sl_{n+1}\), and the Lie group \(SL_{n+1}\) (TODO: illustrate this once this is implemented).
One may also construct crystals associated to various Dynkin diagrams. For example:
sage: C = crystals.Letters(T)
sage: C
The crystal of letters for type ['A', 4]
sage: C.list()
[1, 2, 3, 4, 5]
sage: C = crystals.Tableaux(T, shape=[2])
sage: C
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
sage: C.cardinality()
15
Here is a sample of all the finite irreducible crystallographic Cartan types:
sage: CartanType.samples(finite = True, crystallographic = True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]
One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin diagrams:
sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
E_6, E_7, E_8, F_4, G_2,
A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)}, C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)},
E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
BC_{1}^{(2)}, BC_{5}^{(2)},
B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee}, G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}]
sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested
Non-crystallographic Cartan types are also partially supported:
sage: CartanType.samples(finite = True, crystallographic = False)
[['I', 5], ['H', 3], ['H', 4]]
In Sage, a Cartan type is used as a database of type-specific
information and algorithms (see e.g. sage.combinat.root_system.type_A
).
This database includes how to construct the Dynkin diagram, the ambient space
for the root system (see Wikipedia article Root_system), and further
mathematical properties:
sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)
In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram. This choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements of Mathematics, Springer (2002). ISBN 978-3540426509. For example:
sage: T = CartanType(['D', 4])
sage: DynkinDiagram(T)
O 4
|
|
O---O---O
1 2 3
D4
sage: E6 = CartanType(['E',6])
sage: DynkinDiagram(E6)
O 2
|
|
O---O---O---O---O
1 3 4 5 6
E6
Note
The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with Kac’s.
For example, in type \(C_2\), we have:
sage: C2 = DynkinDiagram(['C',2]); C2
O=<=O
1 2
C2
sage: C2.cartan_matrix()
[ 2 -2]
[-1 2]
However Bourbaki would have the Cartan matrix as:
If desired, other node labelling conventions can be achieved. For example the Kac labelling for type \(E_6\) can be obtained via:
sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram()
O 6
|
|
O---O---O---O---O
1 2 3 4 5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}
Contributions implementing other conventions are very welcome.
Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it fairly easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever possible, so in principle most features should remain available even with custom Cartan types. This has not been used much yet, so some rough corners certainly remain.
Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We start with an empty Dynkin diagram, and add a couple nodes:
sage: g = DynkinDiagram()
sage: g.add_vertices([1,2,3])
Note that the diagonal of the Cartan matrix is already initialized:
sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]
Then we add a couple edges:
sage: g.add_edge(1,2,2)
sage: g.add_edge(1,3)
sage: g.add_edge(2,3)
and we get the desired Cartan matrix:
sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]
Oops, the Cartan matrix did not change! This is because it is cached
for efficiency (see cached_method
). In general, a Dynkin
diagram should not be modified after having been used.
Warning
this is not checked currently
Todo
add a method set_mutable()
as, say, for matrices
Here, we can work around this by clearing the cache:
sage: delattr(g, 'cartan_matrix')
Now we get the desired Cartan matrix:
sage: g.cartan_matrix()
[ 2 -1 -1]
[-2 2 -1]
[-1 -1 2]
Note that backward edges have been automatically added:
sage: g.edges(sort=True)
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]
Reducible Cartan types
Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:
sage: CartanType(['A',2],['B',2])
A2xB2
sage: CartanType([['A',2],['B',2]])
A2xB2
sage: CartanType(['A',2],['B',2]).is_reducible()
True
or using the following short hand notation:
sage: CartanType("A2xB2")
A2xB2
sage: CartanType("A2","B2") == CartanType("A2xB2")
True
Degenerate cases
When possible, type \(I_n\) is automatically converted to the isomorphic crystallographic Cartan types (any reason not to do so?):
sage: CartanType(["I",1])
A1xA1
sage: CartanType(["I",3])
['A', 2]
sage: CartanType(["I",4])
['C', 2]
sage: CartanType(["I",6])
['G', 2]
The Dynkin diagrams for types \(B_1\), \(C_1\), \(D_2\), and \(D_3\) are isomorphic to that for \(A_1\), \(A_1\), \(A_1 \times A_1\), and \(A_3\), respectively. However their natural ambient space realizations (stemming from the corresponding infinite families of Lie groups) are different. Therefore, the Cartan types are considered as distinct:
sage: CartanType(['B',1])
['B', 1]
sage: CartanType(['C',1])
['C', 1]
sage: CartanType(['D',2])
['D', 2]
sage: CartanType(['D',3])
['D', 3]
Affine Cartan types
For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that is arise from the natural affinisation of a finite Cartan type):
sage: CartanType(["A", 4, 1]).dynkin_diagram()
0
O-----------+
| |
| |
O---O---O---O
1 2 3 4
A4~
sage: CartanType(["B", 4, 1]).dynkin_diagram()
O 0
|
|
O---O---O=>=O
1 2 3 4
B4~
or dual thereof:
sage: CartanType(["B", 4, 1]).dual().dynkin_diagram()
O 0
|
|
O---O---O=<=O
1 2 3 4
B4~*
or is of type \(\widetilde{BC}_n\) (which yields an irreducible, but nonreduced root system):
sage: CartanType(["BC", 4, 2]).dynkin_diagram()
O=<=O---O---O=<=O
0 1 2 3 4
BC4~
This includes the two degenerate cases:
sage: CartanType(["A", 1, 1]).dynkin_diagram()
O<=>O
0 1
A1~
sage: CartanType(["BC", 1, 2]).dynkin_diagram()
4
O=<=O
0 1
BC1~
For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous ones:
sage: CartanType(["A", 9, 2])
['B', 5, 1]^*
sage: CartanType(["A", 9, 2]).dynkin_diagram()
O 0
|
|
O---O---O---O=<=O
1 2 3 4 5
B5~*
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
BC5~
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: CartanType(["D", 4, 3]).dynkin_diagram()
3
O=>=O---O
2 1 0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
F4~*
Additionally one can set the notation option to use Kac’s notation:
sage: CartanType.options['notation'] = 'Kac'
sage: CartanType(["A", 9, 2])
['A', 9, 2]
sage: CartanType(["A", 9, 2]).dynkin_diagram()
O 0
|
|
O---O---O---O=<=O
1 2 3 4 5
A9^2
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
A10^2
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: CartanType(["D", 4, 3]).dynkin_diagram()
3
O=>=O---O
2 1 0
D4^3
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
E6^2
sage: CartanType.options['notation'] = 'BC'
Infinite Cartan types
There are minimal implementations of the Cartan types \(A_{\infty}\) and \(A_{+\infty}\). In sage \(oo\) is the same as \(+Infinity\), so \(NN\) and \(ZZ\) are used to differentiate between the \(A_{+\infty}\) and \(A_{\infty}\) root systems:
sage: CartanType(['A', NN])
['A', NN]
sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0 1 2 3 4 5 6
sage: CartanType(['A', ZZ])
['A', ZZ]
sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..
-3 -2 -1 0 1 2 3
There are also the following shorthands:
sage: CartanType("Aoo")
['A', ZZ]
sage: CartanType("A+oo")
['A', NN]
Abstract classes for Cartan types
Concrete classes for Cartan types
Type specific data
The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural embedding of the root system in an Euclidean space. Everything else is reconstructed from this data.
Todo
Should those indexes come before the introduction?
- sage.combinat.root_system.cartan_type.CartanType(*args)#
Cartan types
Todo
Why does sphinx complain if I use sections here?
Introduction
Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root systems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types are a standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).
Let us consider, for example, the Cartan type \(A_4\):
sage: T = CartanType(['A', 4]) sage: T ['A', 4]
It is the name of the following Dynkin diagram:
sage: DynkinDiagram(T) O---O---O---O 1 2 3 4 A4
Note
For convenience, the following shortcuts are available:
sage: DynkinDiagram(['A',4]) O---O---O---O 1 2 3 4 A4 sage: DynkinDiagram('A4') O---O---O---O 1 2 3 4 A4 sage: T.dynkin_diagram() O---O---O---O 1 2 3 4 A4
See
DynkinDiagram
for how to further manipulate Dynkin diagrams.From this data (the Cartan datum), one can construct the associated root system:
sage: RootSystem(T) Root system of type ['A', 4]
The associated Weyl group of \(A_n\) is the symmetric group \(S_{n+1}\):
sage: W = WeylGroup(T) sage: W Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space) sage: W.cardinality() 120
while the Lie algebra is \(sl_{n+1}\), and the Lie group \(SL_{n+1}\) (TODO: illustrate this once this is implemented).
One may also construct crystals associated to various Dynkin diagrams. For example:
sage: C = crystals.Letters(T) sage: C The crystal of letters for type ['A', 4] sage: C.list() [1, 2, 3, 4, 5] sage: C = crystals.Tableaux(T, shape=[2]) sage: C The crystal of tableaux of type ['A', 4] and shape(s) [[2]] sage: C.cardinality() 15
Here is a sample of all the finite irreducible crystallographic Cartan types:
sage: CartanType.samples(finite = True, crystallographic = True) [['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]
One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin diagrams:
sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)] [A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5}, E_6, E_7, E_8, F_4, G_2, A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)}, C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)}, BC_{1}^{(2)}, BC_{5}^{(2)}, B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee}, G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}] sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested
Non-crystallographic Cartan types are also partially supported:
sage: CartanType.samples(finite = True, crystallographic = False) [['I', 5], ['H', 3], ['H', 4]]
In Sage, a Cartan type is used as a database of type-specific information and algorithms (see e.g.
sage.combinat.root_system.type_A
). This database includes how to construct the Dynkin diagram, the ambient space for the root system (see Wikipedia article Root_system), and further mathematical properties:sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic() (True, True, False, True)
In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram. This choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements of Mathematics, Springer (2002). ISBN 978-3540426509. For example:
sage: T = CartanType(['D', 4]) sage: DynkinDiagram(T) O 4 | | O---O---O 1 2 3 D4 sage: E6 = CartanType(['E',6]) sage: DynkinDiagram(E6) O 2 | | O---O---O---O---O 1 3 4 5 6 E6
Note
The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with Kac’s.
For example, in type \(C_2\), we have:
sage: C2 = DynkinDiagram(['C',2]); C2 O=<=O 1 2 C2 sage: C2.cartan_matrix() [ 2 -2] [-1 2]
However Bourbaki would have the Cartan matrix as:
\[\begin{split}\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}.\end{split}\]If desired, other node labelling conventions can be achieved. For example the Kac labelling for type \(E_6\) can be obtained via:
sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram() O 6 | | O---O---O---O---O 1 2 3 4 5 E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}
Contributions implementing other conventions are very welcome.
Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it fairly easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever possible, so in principle most features should remain available even with custom Cartan types. This has not been used much yet, so some rough corners certainly remain.
Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We start with an empty Dynkin diagram, and add a couple nodes:
sage: g = DynkinDiagram() sage: g.add_vertices([1,2,3])
Note that the diagonal of the Cartan matrix is already initialized:
sage: g.cartan_matrix() [2 0 0] [0 2 0] [0 0 2]
Then we add a couple edges:
sage: g.add_edge(1,2,2) sage: g.add_edge(1,3) sage: g.add_edge(2,3)
and we get the desired Cartan matrix:
sage: g.cartan_matrix() [2 0 0] [0 2 0] [0 0 2]
Oops, the Cartan matrix did not change! This is because it is cached for efficiency (see
cached_method
). In general, a Dynkin diagram should not be modified after having been used.Warning
this is not checked currently
Todo
add a method
set_mutable()
as, say, for matricesHere, we can work around this by clearing the cache:
sage: delattr(g, 'cartan_matrix')
Now we get the desired Cartan matrix:
sage: g.cartan_matrix() [ 2 -1 -1] [-2 2 -1] [-1 -1 2]
Note that backward edges have been automatically added:
sage: g.edges(sort=True) [(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]
Reducible Cartan types
Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:
sage: CartanType(['A',2],['B',2]) A2xB2 sage: CartanType([['A',2],['B',2]]) A2xB2 sage: CartanType(['A',2],['B',2]).is_reducible() True
or using the following short hand notation:
sage: CartanType("A2xB2") A2xB2 sage: CartanType("A2","B2") == CartanType("A2xB2") True
Degenerate cases
When possible, type \(I_n\) is automatically converted to the isomorphic crystallographic Cartan types (any reason not to do so?):
sage: CartanType(["I",1]) A1xA1 sage: CartanType(["I",3]) ['A', 2] sage: CartanType(["I",4]) ['C', 2] sage: CartanType(["I",6]) ['G', 2]
The Dynkin diagrams for types \(B_1\), \(C_1\), \(D_2\), and \(D_3\) are isomorphic to that for \(A_1\), \(A_1\), \(A_1 \times A_1\), and \(A_3\), respectively. However their natural ambient space realizations (stemming from the corresponding infinite families of Lie groups) are different. Therefore, the Cartan types are considered as distinct:
sage: CartanType(['B',1]) ['B', 1] sage: CartanType(['C',1]) ['C', 1] sage: CartanType(['D',2]) ['D', 2] sage: CartanType(['D',3]) ['D', 3]
Affine Cartan types
For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that is arise from the natural affinisation of a finite Cartan type):
sage: CartanType(["A", 4, 1]).dynkin_diagram() 0 O-----------+ | | | | O---O---O---O 1 2 3 4 A4~ sage: CartanType(["B", 4, 1]).dynkin_diagram() O 0 | | O---O---O=>=O 1 2 3 4 B4~
or dual thereof:
sage: CartanType(["B", 4, 1]).dual().dynkin_diagram() O 0 | | O---O---O=<=O 1 2 3 4 B4~*
or is of type \(\widetilde{BC}_n\) (which yields an irreducible, but nonreduced root system):
sage: CartanType(["BC", 4, 2]).dynkin_diagram() O=<=O---O---O=<=O 0 1 2 3 4 BC4~
This includes the two degenerate cases:
sage: CartanType(["A", 1, 1]).dynkin_diagram() O<=>O 0 1 A1~ sage: CartanType(["BC", 1, 2]).dynkin_diagram() 4 O=<=O 0 1 BC1~
For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous ones:
sage: CartanType(["A", 9, 2]) ['B', 5, 1]^* sage: CartanType(["A", 9, 2]).dynkin_diagram() O 0 | | O---O---O---O=<=O 1 2 3 4 5 B5~* sage: CartanType(["A", 10, 2]).dynkin_diagram() O=<=O---O---O---O=<=O 0 1 2 3 4 5 BC5~ sage: CartanType(["D", 5, 2]).dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~* sage: CartanType(["D", 4, 3]).dynkin_diagram() 3 O=>=O---O 2 1 0 G2~* relabelled by {0: 0, 1: 2, 2: 1} sage: CartanType(["E", 6, 2]).dynkin_diagram() O---O---O=<=O---O 0 1 2 3 4 F4~*
Additionally one can set the notation option to use Kac’s notation:
sage: CartanType.options['notation'] = 'Kac' sage: CartanType(["A", 9, 2]) ['A', 9, 2] sage: CartanType(["A", 9, 2]).dynkin_diagram() O 0 | | O---O---O---O=<=O 1 2 3 4 5 A9^2 sage: CartanType(["A", 10, 2]).dynkin_diagram() O=<=O---O---O---O=<=O 0 1 2 3 4 5 A10^2 sage: CartanType(["D", 5, 2]).dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 D5^2 sage: CartanType(["D", 4, 3]).dynkin_diagram() 3 O=>=O---O 2 1 0 D4^3 sage: CartanType(["E", 6, 2]).dynkin_diagram() O---O---O=<=O---O 0 1 2 3 4 E6^2 sage: CartanType.options['notation'] = 'BC'
Infinite Cartan types
There are minimal implementations of the Cartan types \(A_{\infty}\) and \(A_{+\infty}\). In sage \(oo\) is the same as \(+Infinity\), so \(NN\) and \(ZZ\) are used to differentiate between the \(A_{+\infty}\) and \(A_{\infty}\) root systems:
sage: CartanType(['A', NN]) ['A', NN] sage: print(CartanType(['A', NN]).ascii_art()) O---O---O---O---O---O---O---.. 0 1 2 3 4 5 6 sage: CartanType(['A', ZZ]) ['A', ZZ] sage: print(CartanType(['A', ZZ]).ascii_art()) ..---O---O---O---O---O---O---O---.. -3 -2 -1 0 1 2 3
There are also the following shorthands:
sage: CartanType("Aoo") ['A', ZZ] sage: CartanType("A+oo") ['A', NN]
Abstract classes for Cartan types
Concrete classes for Cartan types
Type specific data
The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural embedding of the root system in an Euclidean space. Everything else is reconstructed from this data.
Todo
Should those indexes come before the introduction?
- class sage.combinat.root_system.cartan_type.CartanTypeFactory#
Bases:
sage.structure.sage_object.SageObject
- classmethod color(i)#
Default color scheme for the vertices of a Dynkin diagram (and associated objects)
EXAMPLES:
sage: CartanType.color(1) 'blue' sage: CartanType.color(2) 'red' sage: CartanType.color(3) 'green'
The default color is black:
sage: CartanType.color(0) 'black'
Negative indices get the same color as their positive counterparts:
sage: CartanType.color(-1) 'blue' sage: CartanType.color(-2) 'red' sage: CartanType.color(-3) 'green'
- options(*get_value, **set_value)#
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of the options dictionary.
The
options
to partitions can be accessed as the methodCartanType.options
ofCartanType
.OPTIONS:
dual_latex
– (default:\vee
) The latex used for dual CartanTypes when latexingdual_str
– (default:*
) The string used for dual Cartan types when printinglatex_marked
– (default:True
) Indicate in the latex output if a Cartan type has been markedlatex_relabel
– (default:True
) Indicate in the latex output if a Cartan type has been relabelledmark_special_node
– (default:none
) Make the special nodesboth
– both in latex and printinglatex
– only in latexnone
– no markupprinting
– only in printing
marked_node_str
– (default:X
) The string used to indicate a marked node when printingnotation
– (default:Stembridge
) Specifies which notation Cartan types should use when printedBC
– alias forStembridge
Kac
– use Kac’s notationStembridge
– use Stembridge’s notationtilde
– alias forStembridge
twisted
– alias forKac
special_node_str
– (default:@
) The string used to indicate which node is special when printing
EXAMPLES:
sage: ct = CartanType(['D',5,2]); ct ['C', 4, 1]^* sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~* sage: latex(ct) C_{4}^{(1)\vee} sage: CartanType.options(dual_str='#', dual_latex='\\ast',) sage: ct ['C', 4, 1]^# sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~# sage: latex(ct) C_{4}^{(1)\ast} sage: CartanType.options(notation='kac', mark_special_node='both') sage: ct ['D', 5, 2] sage: ct.dynkin_diagram() @=<=O---O---O=>=O 0 1 2 3 4 D5^2 sage: latex(ct) D_{5}^{(2)}
For type \(A_{2n}^{(2)\dagger}\), the dual string/latex options are automatically overridden:
sage: dct = CartanType(['A',8,2]).dual(); dct ['A', 8, 2]^+ sage: latex(dct) A_{8}^{(2)\dagger} sage: dct.dynkin_diagram() @=>=O---O---O=>=O 0 1 2 3 4 A8^2+ sage: CartanType.options._reset()
See
GlobalOptions
for more features of these options.
- samples(finite=None, affine=None, crystallographic=None)#
Return a sample of the available Cartan types.
INPUT:
finite
– a boolean orNone
(default:None
)affine
– a boolean orNone
(default:None
)crystallographic
– a boolean orNone
(default:None
)
The sample contains all the exceptional finite and affine Cartan types, as well as typical representatives of the infinite families.
EXAMPLES:
sage: CartanType.samples() [['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4], ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1], ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1], ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2], ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]
The finite, affine and crystallographic options allow respectively for restricting to (non) finite, (non) affine, and (non) crystallographic Cartan types:
sage: CartanType.samples(finite=True) [['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4]] sage: CartanType.samples(affine=True) [['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1], ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1], ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2], ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*] sage: CartanType.samples(crystallographic=True) [['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1], ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1], ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2], ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*] sage: CartanType.samples(crystallographic=False) [['I', 5], ['H', 3], ['H', 4]]
Todo
add some reducible Cartan types (suggestions?)
- class sage.combinat.root_system.cartan_type.CartanType_abstract#
Bases:
object
Abstract class for Cartan types
Subclasses should implement:
dynkin_diagram()
cartan_matrix()
- as_folding(folding_of=None, sigma=None)#
Return
self
realized as a folded Cartan type.For finite and affine types, this is realized by the Dynkin diagram foldings:
\[\begin{split}\begin{array}{ccl} C_n^{(1)}, A_{2n}^{(2)}, A_{2n}^{(2)\dagger}, D_{n+1}^{(2)} & \hookrightarrow & A_{2n-1}^{(1)}, \\ A_{2n-1}^{(2)}, B_n^{(1)} & \hookrightarrow & D_{n+1}^{(1)}, \\ E_6^{(2)}, F_4^{(1)} & \hookrightarrow & E_6^{(1)}, \\ D_4^{(3)}, G_2^{(1)} & \hookrightarrow & D_4^{(1)}, \\ C_n & \hookrightarrow & A_{2n-1}, \\ B_n & \hookrightarrow & D_{n+1}, \\ F_4 & \hookrightarrow & E_6, \\ G_2 & \hookrightarrow & D_4. \end{array}\end{split}\]For general types, this returns
self
as a folded type ofself
with \(\sigma\) as the identity map.For more information on these foldings and folded Cartan types, see
sage.combinat.root_system.type_folded.CartanTypeFolded
.If the optional inputs
folding_of
andsigma
are specified, then this returns the folded Cartan type ofself
infolding_of
given by the automorphismsigma
.EXAMPLES:
sage: CartanType(['B', 3, 1]).as_folding() ['B', 3, 1] as a folding of ['D', 4, 1] sage: CartanType(['F', 4]).as_folding() ['F', 4] as a folding of ['E', 6] sage: CartanType(['BC', 3, 2]).as_folding() ['BC', 3, 2] as a folding of ['A', 5, 1] sage: CartanType(['D', 4, 3]).as_folding() ['G', 2, 1]^* relabelled by {0: 0, 1: 2, 2: 1} as a folding of ['D', 4, 1]
- coxeter_diagram()#
Return the Coxeter diagram for
self
.EXAMPLES:
sage: CartanType(['B',3]).coxeter_diagram() Graph on 3 vertices sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 3)] sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 4)] sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True) [(1, 2, 6)] sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 4), (3, 4, 3)]
- coxeter_matrix()#
Return the Coxeter matrix for
self
.EXAMPLES:
sage: CartanType(['A', 4]).coxeter_matrix() [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1]
- coxeter_type()#
Return the Coxeter type for
self
.EXAMPLES:
sage: CartanType(['A', 4]).coxeter_type() Coxeter type of ['A', 4]
- dual()#
Return the dual Cartan type, possibly just as a formal dual.
EXAMPLES:
sage: CartanType(['A',3]).dual() ['A', 3] sage: CartanType(["B", 3]).dual() ['C', 3] sage: CartanType(['C',2]).dual() ['B', 2] sage: CartanType(['D',4]).dual() ['D', 4] sage: CartanType(['E',8]).dual() ['E', 8] sage: CartanType(['F',4]).dual() ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
- index_set()#
Return the index set for
self
.This is the list of the nodes of the associated Coxeter or Dynkin diagram.
EXAMPLES:
sage: CartanType(['A', 3, 1]).index_set() (0, 1, 2, 3) sage: CartanType(['D', 4]).index_set() (1, 2, 3, 4) sage: CartanType(['A', 7, 2]).index_set() (0, 1, 2, 3, 4) sage: CartanType(['A', 7, 2]).index_set() (0, 1, 2, 3, 4) sage: CartanType(['A', 6, 2]).index_set() (0, 1, 2, 3) sage: CartanType(['D', 6, 2]).index_set() (0, 1, 2, 3, 4, 5) sage: CartanType(['E', 6, 1]).index_set() (0, 1, 2, 3, 4, 5, 6) sage: CartanType(['E', 6, 2]).index_set() (0, 1, 2, 3, 4) sage: CartanType(['A', 2, 2]).index_set() (0, 1) sage: CartanType(['G', 2, 1]).index_set() (0, 1, 2) sage: CartanType(['F', 4, 1]).index_set() (0, 1, 2, 3, 4)
- is_affine()#
Return whether
self
is affine.EXAMPLES:
sage: CartanType(['A', 3]).is_affine() False sage: CartanType(['A', 3, 1]).is_affine() True
- is_atomic()#
This method is usually equivalent to
is_reducible()
, except for the Cartan type \(D_2\).\(D_2\) is not a standard Cartan type. It is equivalent to type \(A_1 \times A_1\) which is reducible; however the isomorphism from its ambient space (for the orthogonal group of degree 4) to that of \(A_1 \times A_1\) is non trivial, and it is useful to have it.
From a programming point of view its implementation is more similar to the irreducible types, and so the method
is_atomic()
is supplied.EXAMPLES:
sage: CartanType("D2").is_atomic() True sage: CartanType("D2").is_irreducible() False
- is_compound()#
A short hand for not
is_atomic()
.
- is_crystallographic()#
Return whether this Cartan type is crystallographic.
This returns
False
by default. Derived class should override this appropriately.EXAMPLES:
sage: [ [t, t.is_crystallographic() ] for t in CartanType.samples(finite=True) ] [[['A', 1], True], [['A', 5], True], [['B', 1], True], [['B', 5], True], [['C', 1], True], [['C', 5], True], [['D', 2], True], [['D', 3], True], [['D', 5], True], [['E', 6], True], [['E', 7], True], [['E', 8], True], [['F', 4], True], [['G', 2], True], [['I', 5], False], [['H', 3], False], [['H', 4], False]]
- is_finite()#
Return whether this Cartan type is finite.
EXAMPLES:
sage: from sage.combinat.root_system.cartan_type import CartanType_abstract sage: C = CartanType_abstract() sage: C.is_finite() Traceback (most recent call last): ... NotImplementedError: <abstract method is_finite at ...>
sage: CartanType(['A',4]).is_finite() True sage: CartanType(['A',4, 1]).is_finite() False
- is_implemented()#
Check whether the Cartan datum for
self
is actually implemented.EXAMPLES:
sage: CartanType(["A",4,1]).is_implemented() True sage: CartanType(['H',3]).is_implemented() True
- is_irreducible()#
Report whether this Cartan type is irreducible (i.e. simple). This should be overridden in any subclass.
This returns
False
by default. Derived class should override this appropriately.EXAMPLES:
sage: from sage.combinat.root_system.cartan_type import CartanType_abstract sage: C = CartanType_abstract() sage: C.is_irreducible() False
- is_reducible()#
Report whether the root system is reducible (i.e. not simple), that is whether it can be factored as a product of root systems.
EXAMPLES:
sage: CartanType("A2xB3").is_reducible() True sage: CartanType(['A',2]).is_reducible() False
- is_simply_laced()#
Return whether this Cartan type is simply laced.
This returns
False
by default. Derived class should override this appropriately.EXAMPLES:
sage: [ [t, t.is_simply_laced() ] for t in CartanType.samples() ] [[['A', 1], True], [['A', 5], True], [['B', 1], True], [['B', 5], False], [['C', 1], True], [['C', 5], False], [['D', 2], True], [['D', 3], True], [['D', 5], True], [['E', 6], True], [['E', 7], True], [['E', 8], True], [['F', 4], False], [['G', 2], False], [['I', 5], False], [['H', 3], False], [['H', 4], False], [['A', 1, 1], False], [['A', 5, 1], True], [['B', 1, 1], False], [['B', 5, 1], False], [['C', 1, 1], False], [['C', 5, 1], False], [['D', 3, 1], True], [['D', 5, 1], True], [['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True], [['F', 4, 1], False], [['G', 2, 1], False], [['BC', 1, 2], False], [['BC', 5, 2], False], [['B', 5, 1]^*, False], [['C', 4, 1]^*, False], [['F', 4, 1]^*, False], [['G', 2, 1]^*, False], [['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]
- marked_nodes(marked_nodes)#
Return a Cartan type with the nodes
marked_nodes
marked.INPUT:
marked_nodes
– a list of nodes to mark
EXAMPLES:
sage: CartanType(['F',4]).marked_nodes([1, 3]).dynkin_diagram() X---O=>=X---O 1 2 3 4 F4 with nodes (1, 3) marked
- options(*get_value, **set_value)#
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of the options dictionary.
The
options
to partitions can be accessed as the methodCartanType.options
ofCartanType
.OPTIONS:
dual_latex
– (default:\vee
) The latex used for dual CartanTypes when latexingdual_str
– (default:*
) The string used for dual Cartan types when printinglatex_marked
– (default:True
) Indicate in the latex output if a Cartan type has been markedlatex_relabel
– (default:True
) Indicate in the latex output if a Cartan type has been relabelledmark_special_node
– (default:none
) Make the special nodesboth
– both in latex and printinglatex
– only in latexnone
– no markupprinting
– only in printing
marked_node_str
– (default:X
) The string used to indicate a marked node when printingnotation
– (default:Stembridge
) Specifies which notation Cartan types should use when printedBC
– alias forStembridge
Kac
– use Kac’s notationStembridge
– use Stembridge’s notationtilde
– alias forStembridge
twisted
– alias forKac
special_node_str
– (default:@
) The string used to indicate which node is special when printing
EXAMPLES:
sage: ct = CartanType(['D',5,2]); ct ['C', 4, 1]^* sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~* sage: latex(ct) C_{4}^{(1)\vee} sage: CartanType.options(dual_str='#', dual_latex='\\ast',) sage: ct ['C', 4, 1]^# sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~# sage: latex(ct) C_{4}^{(1)\ast} sage: CartanType.options(notation='kac', mark_special_node='both') sage: ct ['D', 5, 2] sage: ct.dynkin_diagram() @=<=O---O---O=>=O 0 1 2 3 4 D5^2 sage: latex(ct) D_{5}^{(2)}
For type \(A_{2n}^{(2)\dagger}\), the dual string/latex options are automatically overridden:
sage: dct = CartanType(['A',8,2]).dual(); dct ['A', 8, 2]^+ sage: latex(dct) A_{8}^{(2)\dagger} sage: dct.dynkin_diagram() @=>=O---O---O=>=O 0 1 2 3 4 A8^2+ sage: CartanType.options._reset()
See
GlobalOptions
for more features of these options.
- rank()#
Return the rank of
self
.This is the number of nodes of the associated Coxeter or Dynkin diagram.
EXAMPLES:
sage: CartanType(['A', 4]).rank() 4 sage: CartanType(['A', 7, 2]).rank() 5 sage: CartanType(['I', 8]).rank() 2
- relabel(relabelling)#
Return a relabelled copy of this Cartan type.
INPUT:
relabelling
– a function (or a list or dictionary)
OUTPUT:
an isomorphic Cartan type obtained by relabelling the nodes of the Dynkin diagram. Namely, the node with label
i
is relabelledf(i)
(or, byf[i]
iff
is a list or dictionary).EXAMPLES:
sage: CartanType(['F',4]).relabel({ 1:4, 2:3, 3:2, 4:1 }).dynkin_diagram() O---O=>=O---O 4 3 2 1 F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
- root_system()#
Return the root system associated to
self
.EXAMPLES:
sage: CartanType(['A',4]).root_system() Root system of type ['A', 4]
- subtype(index_set)#
Return a subtype of
self
given byindex_set
.A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of
self
byindex_set
.EXAMPLES:
sage: ct = CartanType(['A',6,2]) sage: ct.dynkin_diagram() O=<=O---O=<=O 0 1 2 3 BC3~ sage: ct.subtype([1,2,3]) ['C', 3]
- type()#
Return the type of
self
, orNone
if unknown.This method should be overridden in any subclass.
EXAMPLES:
sage: from sage.combinat.root_system.cartan_type import CartanType_abstract sage: C = CartanType_abstract() sage: C.type() is None True
- class sage.combinat.root_system.cartan_type.CartanType_affine#
Bases:
sage.combinat.root_system.cartan_type.CartanType_simple
,sage.combinat.root_system.cartan_type.CartanType_crystallographic
An abstract class for simple affine Cartan types
- AmbientSpace#
- a()#
Return the unique minimal non trivial annihilating linear combination of \(\alpha^\vee_0, \alpha^\vee, \ldots, \alpha^\vee\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns of the Cartan matrix with non-negative coefficients).
Throw an error if the existence or uniqueness does not hold
FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
EXAMPLES:
sage: RootSystem(['C',2,1]).cartan_type().a() Finite family {0: 1, 1: 2, 2: 1} sage: RootSystem(['D',4,1]).cartan_type().a() Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1} sage: RootSystem(['F',4,1]).cartan_type().a() Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2} sage: RootSystem(['BC',4,2]).cartan_type().a() Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
a
is a shortcut for col_annihilator:sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator() Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
- acheck(m=None)#
Return the unique minimal non trivial annihilating linear combination of \(\alpha_0, \alpha_1, \ldots, \alpha_n\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of the Cartan matrix with non-negative coefficients).
Throw an error if the existence of uniqueness does not hold
The optional argument
m
is for internal use only.EXAMPLES:
sage: RootSystem(['C',2,1]).cartan_type().acheck() Finite family {0: 1, 1: 1, 2: 1} sage: RootSystem(['D',4,1]).cartan_type().acheck() Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1} sage: RootSystem(['F',4,1]).cartan_type().acheck() Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1} sage: RootSystem(['BC',4,2]).cartan_type().acheck() Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
acheck
is a shortcut for row_annihilator:sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator() Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
FIXME:
The current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
This really should be a method of
CartanMatrix
.
- basic_untwisted()#
Return the basic untwisted Cartan type associated with this affine Cartan type.
Given an affine type \(X_n^{(r)}\), the basic untwisted type is \(X_n\). In other words, it is the classical Cartan type that is twisted to obtain
self
.EXAMPLES:
sage: CartanType(['A', 1, 1]).basic_untwisted() ['A', 1] sage: CartanType(['A', 3, 1]).basic_untwisted() ['A', 3] sage: CartanType(['B', 3, 1]).basic_untwisted() ['B', 3] sage: CartanType(['E', 6, 1]).basic_untwisted() ['E', 6] sage: CartanType(['G', 2, 1]).basic_untwisted() ['G', 2] sage: CartanType(['A', 2, 2]).basic_untwisted() ['A', 2] sage: CartanType(['A', 4, 2]).basic_untwisted() ['A', 4] sage: CartanType(['A', 11, 2]).basic_untwisted() ['A', 11] sage: CartanType(['D', 5, 2]).basic_untwisted() ['D', 5] sage: CartanType(['E', 6, 2]).basic_untwisted() ['E', 6] sage: CartanType(['D', 4, 3]).basic_untwisted() ['D', 4]
- c()#
Returns the family (c_i)_i of integer coefficients defined by \(c_i=max(1, a_i/a^vee_i)\) (see e.g. [FSS07] p. 3)
FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
EXAMPLES:
sage: RootSystem(['C',2,1]).cartan_type().c() Finite family {0: 1, 1: 2, 2: 1} sage: RootSystem(['D',4,1]).cartan_type().c() Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1} sage: RootSystem(['F',4,1]).cartan_type().c() Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2} sage: RootSystem(['BC',4,2]).cartan_type().c() Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}
REFERENCES:
- FSS07
G. Fourier, A. Schilling, and M. Shimozono, Demazure structure inside Kirillov-Reshetikhin crystals, J. Algebra, Vol. 309, (2007), p. 386-404 arXiv math/0605451
- classical()#
Return the classical Cartan type associated with this affine Cartan type.
EXAMPLES:
sage: CartanType(['A', 1, 1]).classical() ['A', 1] sage: CartanType(['A', 3, 1]).classical() ['A', 3] sage: CartanType(['B', 3, 1]).classical() ['B', 3] sage: CartanType(['A', 2, 2]).classical() ['C', 1] sage: CartanType(['BC', 1, 2]).classical() ['C', 1] sage: CartanType(['A', 4, 2]).classical() ['C', 2] sage: CartanType(['BC', 2, 2]).classical() ['C', 2] sage: CartanType(['A', 10, 2]).classical() ['C', 5] sage: CartanType(['BC', 5, 2]).classical() ['C', 5] sage: CartanType(['D', 5, 2]).classical() ['B', 4] sage: CartanType(['E', 6, 1]).classical() ['E', 6] sage: CartanType(['G', 2, 1]).classical() ['G', 2] sage: CartanType(['E', 6, 2]).classical() ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} sage: CartanType(['D', 4, 3]).classical() ['G', 2]
We check that
classical()
,sage.combinat.root_system.cartan_type.CartanType_crystallographic.dynkin_diagram()
, andspecial_node()
are consistent:sage: for ct in CartanType.samples(affine = True): ....: g1 = ct.classical().dynkin_diagram() ....: g2 = ct.dynkin_diagram() ....: g2.delete_vertex(ct.special_node()) ....: assert g1.vertices(sort=True) == g2.vertices(sort=True) ....: assert g1.edges(sort=True) == g2.edges(sort=True)
- col_annihilator()#
Return the unique minimal non trivial annihilating linear combination of \(\alpha^\vee_0, \alpha^\vee, \ldots, \alpha^\vee\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns of the Cartan matrix with non-negative coefficients).
Throw an error if the existence or uniqueness does not hold
FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
EXAMPLES:
sage: RootSystem(['C',2,1]).cartan_type().a() Finite family {0: 1, 1: 2, 2: 1} sage: RootSystem(['D',4,1]).cartan_type().a() Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1} sage: RootSystem(['F',4,1]).cartan_type().a() Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2} sage: RootSystem(['BC',4,2]).cartan_type().a() Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
a
is a shortcut for col_annihilator:sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator() Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
- is_affine()#
EXAMPLES:
sage: CartanType(['A', 3, 1]).is_affine() True
- is_finite()#
EXAMPLES:
sage: CartanType(['A', 3, 1]).is_finite() False
- is_untwisted_affine()#
Return whether
self
is untwisted affineA Cartan type is untwisted affine if it is the canonical affine extension of some finite type. Every affine type is either untwisted affine, dual thereof, or of type
BC
.EXAMPLES:
sage: CartanType(['A', 3, 1]).is_untwisted_affine() True sage: CartanType(['A', 3, 1]).dual().is_untwisted_affine() # this one is self dual! True sage: CartanType(['B', 3, 1]).dual().is_untwisted_affine() False sage: CartanType(['BC', 3, 2]).is_untwisted_affine() False
- other_affinization()#
Return the other affinization of the same classical type.
EXAMPLES:
sage: CartanType(["A", 3, 1]).other_affinization() ['A', 3, 1] sage: CartanType(["B", 3, 1]).other_affinization() ['C', 3, 1]^* sage: CartanType(["C", 3, 1]).dual().other_affinization() ['B', 3, 1]
Is this what we want?:
sage: CartanType(["BC", 3, 2]).dual().other_affinization() ['B', 3, 1]
- row_annihilator(m=None)#
Return the unique minimal non trivial annihilating linear combination of \(\alpha_0, \alpha_1, \ldots, \alpha_n\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of the Cartan matrix with non-negative coefficients).
Throw an error if the existence of uniqueness does not hold
The optional argument
m
is for internal use only.EXAMPLES:
sage: RootSystem(['C',2,1]).cartan_type().acheck() Finite family {0: 1, 1: 1, 2: 1} sage: RootSystem(['D',4,1]).cartan_type().acheck() Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1} sage: RootSystem(['F',4,1]).cartan_type().acheck() Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1} sage: RootSystem(['BC',4,2]).cartan_type().acheck() Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
acheck
is a shortcut for row_annihilator:sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator() Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
FIXME:
The current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
This really should be a method of
CartanMatrix
.
- special_node()#
Return a special node of the Dynkin diagram.
A special node is a node of the Dynkin diagram such that pruning it yields a Dynkin diagram for the associated classical type (see
classical()
).This method returns the label of some special node. This is usually \(0\) in the standard conventions.
EXAMPLES:
sage: CartanType(['A', 3, 1]).special_node() 0
The choice is guaranteed to be consistent with the indexing of the nodes of the classical Dynkin diagram:
sage: CartanType(['A', 3, 1]).index_set() (0, 1, 2, 3) sage: CartanType(['A', 3, 1]).classical().index_set() (1, 2, 3)
- special_nodes()#
Return the set of special nodes of the affine Dynkin diagram.
EXAMPLES:
sage: CartanType(['A',3,1]).special_nodes() (0, 1, 2, 3) sage: CartanType(['C',2,1]).special_nodes() (0, 2) sage: CartanType(['D',4,1]).special_nodes() (0, 1, 3, 4) sage: CartanType(['E',6,1]).special_nodes() (0, 1, 6) sage: CartanType(['D',3,2]).special_nodes() (0, 2) sage: CartanType(['A',4,2]).special_nodes() (0,)
- translation_factors()#
Returns the translation factors for
self
. Those are the smallest factors \(t_i\) such that the translation by \(t_i \alpha_i\) maps the fundamental polygon to another polygon in the alcove picture.OUTPUT: a dictionary from
self.index_set()
to \(\ZZ\) (or \(\QQ\) for affine type \(BC\))Those coefficients are all \(1\) for dual untwisted, and in particular for simply laced. They coincide with the usual \(c_i\) coefficients (see
c()
) for untwisted and dual thereof. See the discussion below for affine type \(BC\).Note: one usually realizes the alcove picture in the coweight lattice, with translations by coroots; in that case, one will use the translation factors for the dual Cartan type.
FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.
EXAMPLES:
sage: CartanType(['C',2,1]).translation_factors() Finite family {0: 1, 1: 2, 2: 1} sage: CartanType(['C',2,1]).dual().translation_factors() Finite family {0: 1, 1: 1, 2: 1} sage: CartanType(['D',4,1]).translation_factors() Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1} sage: CartanType(['F',4,1]).translation_factors() Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2} sage: CartanType(['BC',4,2]).translation_factors() Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1/2}
We proceed with systematic tests taken from MuPAD-Combinat’s testsuite:
sage: list(CartanType(["A", 1, 1]).translation_factors()) [1, 1] sage: list(CartanType(["A", 5, 1]).translation_factors()) [1, 1, 1, 1, 1, 1] sage: list(CartanType(["B", 5, 1]).translation_factors()) [1, 1, 1, 1, 1, 2] sage: list(CartanType(["C", 5, 1]).translation_factors()) [1, 2, 2, 2, 2, 1] sage: list(CartanType(["D", 5, 1]).translation_factors()) [1, 1, 1, 1, 1, 1] sage: list(CartanType(["E", 6, 1]).translation_factors()) [1, 1, 1, 1, 1, 1, 1] sage: list(CartanType(["E", 7, 1]).translation_factors()) [1, 1, 1, 1, 1, 1, 1, 1] sage: list(CartanType(["E", 8, 1]).translation_factors()) [1, 1, 1, 1, 1, 1, 1, 1, 1] sage: list(CartanType(["F", 4, 1]).translation_factors()) [1, 1, 1, 2, 2] sage: list(CartanType(["G", 2, 1]).translation_factors()) [1, 3, 1] sage: list(CartanType(["A", 2, 2]).translation_factors()) [1, 1/2] sage: list(CartanType(["A", 2, 2]).dual().translation_factors()) [1/2, 1] sage: list(CartanType(["A", 10, 2]).translation_factors()) [1, 1, 1, 1, 1, 1/2] sage: list(CartanType(["A", 10, 2]).dual().translation_factors()) [1/2, 1, 1, 1, 1, 1] sage: list(CartanType(["A", 9, 2]).translation_factors()) [1, 1, 1, 1, 1, 1] sage: list(CartanType(["D", 5, 2]).translation_factors()) [1, 1, 1, 1, 1] sage: list(CartanType(["D", 4, 3]).translation_factors()) [1, 1, 1] sage: list(CartanType(["E", 6, 2]).translation_factors()) [1, 1, 1, 1, 1]
We conclude with a discussion of the appropriate value for affine type \(BC\). Let us consider the alcove picture realized in the weight lattice. It is obtained by taking the level-\(1\) affine hyperplane in the weight lattice, and projecting it along \(\Lambda_0\):
sage: R = RootSystem(["BC",2,2]) sage: alpha = R.weight_space().simple_roots() sage: alphacheck = R.coroot_space().simple_roots() sage: Lambda = R.weight_space().fundamental_weights()
Here are the levels of the fundamental weights:
sage: Lambda[0].level(), Lambda[1].level(), Lambda[2].level() (1, 2, 2)
So the “center” of the fundamental polygon at level \(1\) is:
sage: O = Lambda[0] sage: O.level() 1
We take the projection \(\omega_1\) at level \(0\) of \(\Lambda_1\) as unit vector on the \(x\)-axis, and the projection \(\omega_2\) at level 0 of \(\Lambda_2\) as unit vector of the \(y\)-axis:
sage: omega1 = Lambda[1]-2*Lambda[0] sage: omega2 = Lambda[2]-2*Lambda[0] sage: omega1.level(), omega2.level() (0, 0)
The projections of the simple roots can be read off:
sage: alpha[0] 2*Lambda[0] - Lambda[1] sage: alpha[1] -2*Lambda[0] + 2*Lambda[1] - Lambda[2] sage: alpha[2] -2*Lambda[1] + 2*Lambda[2]
Namely \(\alpha_0 = -\omega_1\), \(\alpha_1 = 2\omega_1 - \omega_2\) and \(\alpha_2 = -2 \omega_1 + 2 \omega_2\).
The reflection hyperplane defined by \(\alpha_0^\vee\) goes through the points \(O+1/2 \omega_1\) and \(O+1/2 \omega_2\):
sage: (O+(1/2)*omega1).scalar(alphacheck[0]) 0 sage: (O+(1/2)*omega2).scalar(alphacheck[0]) 0
Hence, the fundamental alcove is the triangle \((O, O+1/2 \omega_1, O+1/2 \omega_2)\). By successive reflections, one can tile the full plane. This induces a tiling of the full plane by translates of the fundamental polygon.
Todo
Add the picture here, once root system plots in the weight lattice will be implemented. In the mean time, the reader may look up the dual picture on Figure 2 of [HST09] which was produced by MuPAD-Combinat.
From this picture, one can read that translations by \(\alpha_0\), \(\alpha_1\), and \(1/2\alpha_2\) map the fundamental polygon to translates of it in the alcove picture, and are smallest with this property. Hence, the translation factors for affine type \(BC\) are \(t_0=1, t_1=1, t_2=1/2\):
sage: CartanType(['BC',2,2]).translation_factors() Finite family {0: 1, 1: 1, 2: 1/2}
REFERENCES:
- HST09
F. Hivert, A. Schilling, and N. M. Thiery, Hecke group algebras as quotients of affine Hecke algebras at level 0, JCT A, Vol. 116, (2009) p. 844-863 arXiv 0804.3781
- class sage.combinat.root_system.cartan_type.CartanType_crystallographic#
Bases:
sage.combinat.root_system.cartan_type.CartanType_abstract
An abstract class for crystallographic Cartan types.
- ascii_art(label='lambda x: x', node=None)#
Return an ascii art representation of the Dynkin diagram.
INPUT:
label
– (default: the identity) a relabeling function for the nodesnode
– (optional) a function which returns the character for a node
EXAMPLES:
sage: cartan_type = CartanType(['B',5,1]) sage: print(cartan_type.ascii_art()) O 0 | | O---O---O---O=>=O 1 2 3 4 5
The label option is useful to visualize various statistics on the nodes of the Dynkin diagram:
sage: a = cartan_type.col_annihilator(); a Finite family {0: 1, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2} sage: print(CartanType(['B',5,1]).ascii_art(label=a.__getitem__)) O 1 | | O---O---O---O=>=O 1 2 2 2 2
- cartan_matrix()#
Return the Cartan matrix associated with
self
.EXAMPLES:
sage: CartanType(['A',4]).cartan_matrix() [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2]
- coxeter_diagram()#
Return the Coxeter diagram for
self
.This implementation constructs it from the Dynkin diagram.
EXAMPLES:
sage: CartanType(['A',3]).coxeter_diagram() Graph on 3 vertices sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 3)] sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 4)] sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True) [(1, 2, 6)] sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True) [(1, 2, 3), (2, 3, 4), (3, 4, 3)] sage: CartanType(['A',2,2]).coxeter_diagram().edges(sort=True) [(0, 1, +Infinity)]
- dynkin_diagram()#
Return the Dynkin diagram associated with
self
.EXAMPLES:
sage: CartanType(['A',4]).dynkin_diagram() O---O---O---O 1 2 3 4 A4
Note
Derived subclasses should typically implement this as a cached method.
- index_set_bipartition()#
Return a bipartition \(\{L,R\}\) of the vertices of the Dynkin diagram.
For \(i\) and \(j\) both in \(L\) (or both in \(R\)), the simple reflections \(s_i\) and \(s_j\) commute.
Of course, the Dynkin diagram should be bipartite. This is always the case for all finite types.
EXAMPLES:
sage: CartanType(['A',5]).index_set_bipartition() ({1, 3, 5}, {2, 4}) sage: CartanType(['A',2,1]).index_set_bipartition() Traceback (most recent call last): ... ValueError: the Dynkin diagram must be bipartite
- is_crystallographic()#
Implements
CartanType_abstract.is_crystallographic()
by returningTrue
.EXAMPLES:
sage: CartanType(['A', 3, 1]).is_crystallographic() True
- symmetrizer()#
Return the symmetrizer of the Cartan matrix of
self
.A Cartan matrix \(M\) is symmetrizable if there exists a non trivial diagonal matrix \(D\) such that \(DM\) is a symmetric matrix, that is \(DM = M^tD\). In that case, \(D\) is unique, up to a scalar factor for each connected component of the Dynkin diagram.
This method computes the unique minimal such \(D\) with positive integral coefficients. If \(D\) exists, it is returned as a family. Otherwise
None
is returned.The coefficients are coerced to
base_ring
.EXAMPLES:
sage: CartanType(["B",5]).symmetrizer() Finite family {1: 2, 2: 2, 3: 2, 4: 2, 5: 1}
Here is a neat trick to visualize it better:
sage: T = CartanType(["B",5]) sage: print(T.ascii_art(T.symmetrizer().__getitem__)) O---O---O---O=>=O 2 2 2 2 1 sage: T = CartanType(["BC",5, 2]) sage: print(T.ascii_art(T.symmetrizer().__getitem__)) O=<=O---O---O---O=<=O 1 2 2 2 2 4
Here is the symmetrizer of some reducible Cartan types:
sage: T = CartanType(["D", 2]) sage: print(T.ascii_art(T.symmetrizer().__getitem__)) O O 1 1 sage: T = CartanType(["B",5],["BC",5, 2]) sage: print(T.ascii_art(T.symmetrizer().__getitem__)) O---O---O---O=>=O 2 2 2 2 1 O=<=O---O---O---O=<=O 1 2 2 2 2 4 Property: up to an overall scalar factor, this gives the norm of the simple roots in the ambient space:: sage: T = CartanType(["C",5]) sage: print(T.ascii_art(T.symmetrizer().__getitem__)) O---O---O---O=<=O 1 1 1 1 2 sage: alpha = RootSystem(T).ambient_space().simple_roots() sage: print(T.ascii_art(lambda i: alpha[i].scalar(alpha[i]))) O---O---O---O=<=O 2 2 2 2 4
- class sage.combinat.root_system.cartan_type.CartanType_decorator(ct)#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.sage_object.SageObject
,sage.combinat.root_system.cartan_type.CartanType_abstract
Concrete base class for Cartan types that decorate another Cartan type.
- index_set()#
EXAMPLES:
sage: ct = CartanType(['F', 4, 1]).dual() sage: ct.index_set() (0, 1, 2, 3, 4)
- is_affine()#
EXAMPLES:
sage: ct = CartanType(['G', 2]).relabel({1:2,2:1}) sage: ct.is_affine() False
- is_crystallographic()#
EXAMPLES:
sage: ct = CartanType(['G', 2]).relabel({1:2,2:1}) sage: ct.is_crystallographic() True
- is_finite()#
EXAMPLES:
sage: ct = CartanType(['G', 2]).relabel({1:2,2:1}) sage: ct.is_finite() True
- is_irreducible()#
EXAMPLES:
sage: ct = CartanType(['G', 2]).relabel({1:2,2:1}) sage: ct.is_irreducible() True
- rank()#
EXAMPLES:
sage: ct = CartanType(['G', 2]).relabel({1:2,2:1}) sage: ct.rank() 2
- class sage.combinat.root_system.cartan_type.CartanType_finite#
Bases:
sage.combinat.root_system.cartan_type.CartanType_abstract
An abstract class for simple affine Cartan types.
- is_affine()#
EXAMPLES:
sage: CartanType(["A", 3]).is_affine() False
- is_finite()#
EXAMPLES:
sage: CartanType(["A", 3]).is_finite() True
- class sage.combinat.root_system.cartan_type.CartanType_simple#
Bases:
sage.combinat.root_system.cartan_type.CartanType_abstract
An abstract class for simple Cartan types.
- is_irreducible()#
Return whether
self
is irreducible, which isTrue
.EXAMPLES:
sage: CartanType(['A', 3]).is_irreducible() True
- class sage.combinat.root_system.cartan_type.CartanType_simple_finite#
Bases:
object
- class sage.combinat.root_system.cartan_type.CartanType_simply_laced#
Bases:
sage.combinat.root_system.cartan_type.CartanType_crystallographic
An abstract class for simply laced Cartan types.
- dual()#
Simply laced Cartan types are self-dual, so return
self
.EXAMPLES:
sage: CartanType(["A", 3]).dual() ['A', 3] sage: CartanType(["A", 3, 1]).dual() ['A', 3, 1] sage: CartanType(["D", 3]).dual() ['D', 3] sage: CartanType(["D", 4, 1]).dual() ['D', 4, 1] sage: CartanType(["E", 6]).dual() ['E', 6] sage: CartanType(["E", 6, 1]).dual() ['E', 6, 1]
- is_simply_laced()#
Return whether
self
is simply laced, which isTrue
.EXAMPLES:
sage: CartanType(['A',3,1]).is_simply_laced() True sage: CartanType(['A',2]).is_simply_laced() True
- class sage.combinat.root_system.cartan_type.CartanType_standard#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.sage_object.SageObject
- class sage.combinat.root_system.cartan_type.CartanType_standard_affine(letter, n, affine=1)#
Bases:
sage.combinat.root_system.cartan_type.CartanType_standard
,sage.combinat.root_system.cartan_type.CartanType_affine
A concrete class for affine simple Cartan types.
- index_set()#
Implements
CartanType_abstract.index_set()
.The index set for all standard affine Cartan types is of the form \(\{0, \ldots, n\}\).
EXAMPLES:
sage: CartanType(['A', 5, 1]).index_set() (0, 1, 2, 3, 4, 5)
- rank()#
Return the rank of
self
which for type \(X_n^{(1)}\) is \(n + 1\).EXAMPLES:
sage: CartanType(['A', 4, 1]).rank() 5 sage: CartanType(['B', 4, 1]).rank() 5 sage: CartanType(['C', 3, 1]).rank() 4 sage: CartanType(['D', 4, 1]).rank() 5 sage: CartanType(['E', 6, 1]).rank() 7 sage: CartanType(['E', 7, 1]).rank() 8 sage: CartanType(['F', 4, 1]).rank() 5 sage: CartanType(['G', 2, 1]).rank() 3 sage: CartanType(['A', 2, 2]).rank() 2 sage: CartanType(['A', 6, 2]).rank() 4 sage: CartanType(['A', 7, 2]).rank() 5 sage: CartanType(['D', 5, 2]).rank() 5 sage: CartanType(['E', 6, 2]).rank() 5 sage: CartanType(['D', 4, 3]).rank() 3
- special_node()#
Implement
CartanType_abstract.special_node()
.With the standard labelling conventions, \(0\) is always a special node.
EXAMPLES:
sage: CartanType(['A', 3, 1]).special_node() 0
- type()#
Return the type of
self
.EXAMPLES:
sage: CartanType(['A', 4, 1]).type() 'A'
- class sage.combinat.root_system.cartan_type.CartanType_standard_finite(letter, n)#
Bases:
sage.combinat.root_system.cartan_type.CartanType_standard
,sage.combinat.root_system.cartan_type.CartanType_finite
A concrete base class for the finite standard Cartan types.
This includes for example \(A_3\), \(D_4\), or \(E_8\).
- affine()#
Return the corresponding untwisted affine Cartan type.
EXAMPLES:
sage: CartanType(['A',3]).affine() ['A', 3, 1]
- coxeter_number()#
Return the Coxeter number associated with
self
.The Coxeter number is the order of a Coxeter element of the corresponding Weyl group.
See Bourbaki, Lie Groups and Lie Algebras V.6.1 or Wikipedia article Coxeter_element for more information.
EXAMPLES:
sage: CartanType(['A',4]).coxeter_number() 5 sage: CartanType(['B',4]).coxeter_number() 8 sage: CartanType(['C',4]).coxeter_number() 8
- dual_coxeter_number()#
Return the Coxeter number associated with
self
.EXAMPLES:
sage: CartanType(['A',4]).dual_coxeter_number() 5 sage: CartanType(['B',4]).dual_coxeter_number() 7 sage: CartanType(['C',4]).dual_coxeter_number() 5
- index_set()#
Implements
CartanType_abstract.index_set()
.The index set for all standard finite Cartan types is of the form \(\{1, \ldots, n\}\). (See
type_I
for a slight abuse of this).EXAMPLES:
sage: CartanType(['A', 5]).index_set() (1, 2, 3, 4, 5)
- opposition_automorphism()#
Returns the opposition automorphism
The opposition automorphism is the automorphism \(i \mapsto i^*\) of the vertices Dynkin diagram such that, for \(w_0\) the longest element of the Weyl group, and any simple root \(\alpha_i\), one has \(\alpha_{i^*} = -w_0(\alpha_i)\).
The automorphism is returned as a
Family
.EXAMPLES:
sage: ct = CartanType(['A', 5]) sage: ct.opposition_automorphism() Finite family {1: 5, 2: 4, 3: 3, 4: 2, 5: 1} sage: ct = CartanType(['D', 4]) sage: ct.opposition_automorphism() Finite family {1: 1, 2: 2, 3: 3, 4: 4} sage: ct = CartanType(['D', 5]) sage: ct.opposition_automorphism() Finite family {1: 1, 2: 2, 3: 3, 4: 5, 5: 4} sage: ct = CartanType(['C', 4]) sage: ct.opposition_automorphism() Finite family {1: 1, 2: 2, 3: 3, 4: 4}
- rank()#
Return the rank of
self
which for type \(X_n\) is \(n\).EXAMPLES:
sage: CartanType(['A', 3]).rank() 3 sage: CartanType(['B', 3]).rank() 3 sage: CartanType(['C', 3]).rank() 3 sage: CartanType(['D', 4]).rank() 4 sage: CartanType(['E', 6]).rank() 6
- type()#
Returns the type of
self
.EXAMPLES:
sage: CartanType(['A', 4]).type() 'A' sage: CartanType(['A', 4, 1]).type() 'A'
- class sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine(letter, n, affine=1)#
Bases:
sage.combinat.root_system.cartan_type.CartanType_standard_affine
A concrete class for the standard untwisted affine Cartan types.
- basic_untwisted()#
Return the basic_untwisted Cartan type associated with this affine Cartan type.
Given an affine type \(X_n^{(r)}\), the basic_untwisted type is \(X_n\). In other words, it is the classical Cartan type that is twisted to obtain
self
.EXAMPLES:
sage: CartanType(['A', 1, 1]).basic_untwisted() ['A', 1] sage: CartanType(['A', 3, 1]).basic_untwisted() ['A', 3] sage: CartanType(['B', 3, 1]).basic_untwisted() ['B', 3] sage: CartanType(['E', 6, 1]).basic_untwisted() ['E', 6] sage: CartanType(['G', 2, 1]).basic_untwisted() ['G', 2]
- classical()#
Return the classical Cartan type associated with
self
.EXAMPLES:
sage: CartanType(['A', 3, 1]).classical() ['A', 3] sage: CartanType(['B', 3, 1]).classical() ['B', 3] sage: CartanType(['C', 3, 1]).classical() ['C', 3] sage: CartanType(['D', 4, 1]).classical() ['D', 4] sage: CartanType(['E', 6, 1]).classical() ['E', 6] sage: CartanType(['F', 4, 1]).classical() ['F', 4] sage: CartanType(['G', 2, 1]).classical() ['G', 2]
- is_untwisted_affine()#
Implement
CartanType_affine.is_untwisted_affine()
by returningTrue
.EXAMPLES:
sage: CartanType(['B', 3, 1]).is_untwisted_affine() True
- class sage.combinat.root_system.cartan_type.SuperCartanType_standard#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.sage_object.SageObject
- options(*get_value, **set_value)#
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of the options dictionary.
The
options
to partitions can be accessed as the methodCartanType.options
ofCartanType
.OPTIONS:
dual_latex
– (default:\vee
) The latex used for dual CartanTypes when latexingdual_str
– (default:*
) The string used for dual Cartan types when printinglatex_marked
– (default:True
) Indicate in the latex output if a Cartan type has been markedlatex_relabel
– (default:True
) Indicate in the latex output if a Cartan type has been relabelledmark_special_node
– (default:none
) Make the special nodesboth
– both in latex and printinglatex
– only in latexnone
– no markupprinting
– only in printing
marked_node_str
– (default:X
) The string used to indicate a marked node when printingnotation
– (default:Stembridge
) Specifies which notation Cartan types should use when printedBC
– alias forStembridge
Kac
– use Kac’s notationStembridge
– use Stembridge’s notationtilde
– alias forStembridge
twisted
– alias forKac
special_node_str
– (default:@
) The string used to indicate which node is special when printing
EXAMPLES:
sage: ct = CartanType(['D',5,2]); ct ['C', 4, 1]^* sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~* sage: latex(ct) C_{4}^{(1)\vee} sage: CartanType.options(dual_str='#', dual_latex='\\ast',) sage: ct ['C', 4, 1]^# sage: ct.dynkin_diagram() O=<=O---O---O=>=O 0 1 2 3 4 C4~# sage: latex(ct) C_{4}^{(1)\ast} sage: CartanType.options(notation='kac', mark_special_node='both') sage: ct ['D', 5, 2] sage: ct.dynkin_diagram() @=<=O---O---O=>=O 0 1 2 3 4 D5^2 sage: latex(ct) D_{5}^{(2)}
For type \(A_{2n}^{(2)\dagger}\), the dual string/latex options are automatically overridden:
sage: dct = CartanType(['A',8,2]).dual(); dct ['A', 8, 2]^+ sage: latex(dct) A_{8}^{(2)\dagger} sage: dct.dynkin_diagram() @=>=O---O---O=>=O 0 1 2 3 4 A8^2+ sage: CartanType.options._reset()
See
GlobalOptions
for more features of these options.