Dense univariate polynomials over \(\ZZ/n\ZZ\), implemented using FLINT#
This module gives a fast implementation of \((\ZZ/n\ZZ)[x]\) whenever \(n\) is at
most sys.maxsize
. We use it by default in preference to NTL when the modulus
is small, falling back to NTL if the modulus is too large, as in the example
below.
EXAMPLES:
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a)
<class 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: R.<a> = PolynomialRing(Integers(5*2^64))
sage: type(a)
<class 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: R.<a> = PolynomialRing(Integers(5*2^64), implementation="FLINT")
Traceback (most recent call last):
...
ValueError: FLINT does not support modulus 92233720368547758080
AUTHORS:
Burcin Erocal (2008-11) initial implementation
Martin Albrecht (2009-01) another initial implementation
- class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template#
Bases:
sage.rings.polynomial.polynomial_element.Polynomial
Template for interfacing to external C / C++ libraries for implementations of polynomials.
AUTHORS:
Robert Bradshaw (2008-10): original idea for templating
Martin Albrecht (2008-10): initial implementation
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the
celement_
functions (seesage.libs.ntl.ntl_GF2X_linkage
for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. Seesage.rings.polynomial.polynomial_gf2x
for an example.We illustrate the generic glueing using univariate polynomials over \(\mathop{\mathrm{GF}}(2)\).
Note
Implementations using this template MUST implement coercion from base ring elements and
get_unsafe()
. SeePolynomial_GF2X
for an example.- degree()#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.degree() 1 sage: P(1).degree() 0 sage: P(0).degree() -1
- gcd(other)#
Return the greatest common divisor of self and other.
EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x*(x+1) sage: f.gcd(x+1) x + 1 sage: f.gcd(x^2) x
- get_cparent()#
- is_gen()#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.is_gen() True sage: (x+1).is_gen() False
- is_one()#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: P(1).is_one() True
- is_zero()#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.is_zero() False
- list(copy=True)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x.list() [0, 1] sage: list(x) [0, 1]
- quo_rem(right)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x^2 + x + 1 sage: f.quo_rem(x + 1) (x, 1)
- shift(n)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: f = x^3 + x^2 + 1 sage: f.shift(1) x^4 + x^3 + x sage: f.shift(-1) x^2 + x
- truncate(n)#
Returns this polynomial mod \(x^n\).
EXAMPLES:
sage: R.<x> =GF(2)[] sage: f = sum(x^n for n in range(10)); f x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 sage: f.truncate(6) x^5 + x^4 + x^3 + x^2 + x + 1
If the precision is higher than the degree of the polynomial then the polynomial itself is returned:
sage: f.truncate(10) is f True
If the precision is negative, the zero polynomial is returned:
sage: f.truncate(-1) 0
- xgcd(other)#
Computes extended gcd of self and other.
EXAMPLES:
sage: P.<x> = GF(7)[] sage: f = x*(x+1) sage: f.xgcd(x+1) (x + 1, 0, 1) sage: f.xgcd(x^2) (x, 1, 6)
- class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint#
Bases:
sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template
Polynomial on \(\ZZ/n\ZZ\) implemented via FLINT.
- _add_(right)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x + 1 x + 1
- _sub_(right)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x - 1 x + 1
- _lmul_(left)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: t = x^2 + x + 1 sage: 0*t 0 sage: 1*t x^2 + x + 1 sage: R.<y> = GF(5)[] sage: u = y^2 + y + 1 sage: 3*u 3*y^2 + 3*y + 3 sage: 5*u 0 sage: (2^81)*u 2*y^2 + 2*y + 2 sage: (-2^81)*u 3*y^2 + 3*y + 3
sage: P.<x> = GF(2)[] sage: t = x^2 + x + 1 sage: t*0 0 sage: t*1 x^2 + x + 1 sage: R.<y> = GF(5)[] sage: u = y^2 + y + 1 sage: u*3 3*y^2 + 3*y + 3 sage: u*5 0
- _rmul_(right)#
Multiply self on the right by a scalar.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = (x^3 + x + 5) sage: f._rmul_(7) 7*x^3 + 7*x + 35 sage: f*7 7*x^3 + 7*x + 35
- _mul_(right)#
EXAMPLES:
sage: P.<x> = GF(2)[] sage: x*(x+1) x^2 + x
- _mul_trunc_(right, n)#
Return the product of this polynomial and other truncated to the given length \(n\).
This function is usually more efficient than simply doing the multiplication and then truncating. The function is tuned for length \(n\) about half the length of a full product.
EXAMPLES:
sage: P.<a>=GF(7)[] sage: a = P(range(10)); b = P(range(5, 15)) sage: a._mul_trunc_(b, 5) 4*a^4 + 6*a^3 + 2*a^2 + 5*a
- factor()#
Returns the factorization of the polynomial.
EXAMPLES:
sage: R.<x> = GF(5)[] sage: (x^2 + 1).factor() (x + 2) * (x + 3)
It also works for prime-power moduli:
sage: R.<x> = Zmod(23^5)[] sage: (x^3 + 1).factor() (x + 1) * (x^2 + 6436342*x + 1)
- is_irreducible()#
Return whether this polynomial is irreducible.
EXAMPLES:
sage: R.<x> = GF(5)[] sage: (x^2 + 1).is_irreducible() False sage: (x^3 + x + 1).is_irreducible() True
Not implemented when the base ring is not a field:
sage: S.<s> = Zmod(10)[] sage: (s^2).is_irreducible() Traceback (most recent call last): ... NotImplementedError: checking irreducibility of polynomials over rings with composite characteristic is not implemented
- monic()#
Return this polynomial divided by its leading coefficient.
Raises ValueError if the leading coefficient is not invertible in the base ring.
EXAMPLES:
sage: R.<x> = GF(5)[] sage: (2*x^2+1).monic() x^2 + 3
- rational_reconstruct(*args, **kwds)#
Deprecated: Use
rational_reconstruction()
instead. See trac ticket #12696 for details.
- rational_reconstruction(m, n_deg=0, d_deg=0)#
Construct a rational function n/d such that \(p*d\) is equivalent to \(n\) modulo \(m\) where \(p\) is this polynomial.
EXAMPLES:
sage: P.<x> = GF(5)[] sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2 sage: n, d = p.rational_reconstruction(x^9, 4, 4); n, d (3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x) sage: (p*d % x^9) == n True
- resultant(other)#
Returns the resultant of self and other, which must lie in the same polynomial ring.
INPUT:
other – a polynomial
OUTPUT: an element of the base ring of the polynomial ring
EXAMPLES:
sage: R.<x> = GF(19)['x'] sage: f = x^3 + x + 1; g = x^3 - x - 1 sage: r = f.resultant(g); r 11 sage: r.parent() is GF(19) True
The following example shows that trac ticket #11782 has been fixed:
sage: R.<x> = ZZ.quo(9)['x'] sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1 sage: f.resultant(g) 5
- reverse(degree=None)#
Return a polynomial with the coefficients of this polynomial reversed.
If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before computing the reverse.
EXAMPLES:
sage: R.<x> = GF(5)[] sage: p = R([1,2,3,4]); p 4*x^3 + 3*x^2 + 2*x + 1 sage: p.reverse() x^3 + 2*x^2 + 3*x + 4 sage: p.reverse(degree=6) x^6 + 2*x^5 + 3*x^4 + 4*x^3 sage: p.reverse(degree=2) x^2 + 2*x + 3 sage: R.<x> = GF(101)[] sage: f = x^3 - x + 2; f x^3 + 100*x + 2 sage: f.reverse() 2*x^3 + 100*x^2 + 1 sage: f.reverse() == f(1/x) * x^f.degree() True
Note that if \(f\) has zero constant coefficient, its reverse will have lower degree.
sage: f = x^3 + 2*x sage: f.reverse() 2*x^2 + 1
In this case, reverse is not an involution unless we explicitly specify a degree.
sage: f x^3 + 2*x sage: f.reverse().reverse() x^2 + 2 sage: f.reverse(5).reverse(5) x^3 + 2*x
- revert_series(n)#
Return a polynomial \(f\) such that \(f(self(x)) = self(f(x)) = x mod x^n\).
EXAMPLES:
sage: R.<t> = GF(5)[] sage: f = t + 2*t^2 - t^3 - 3*t^4 sage: f.revert_series(5) 3*t^4 + 4*t^3 + 3*t^2 + t sage: f.revert_series(-1) Traceback (most recent call last): ... ValueError: argument n must be a non-negative integer, got -1 sage: g = - t^3 + t^5 sage: g.revert_series(6) Traceback (most recent call last): ... ValueError: self must have constant coefficient 0 and a unit for coefficient t^1 sage: g = t + 2*t^2 - t^3 -3*t^4 + t^5 sage: g.revert_series(6) Traceback (most recent call last): ... ValueError: the integers 1 up to n=5 are required to be invertible over the base field
- small_roots(*args, **kwds)#
See
sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()
for the documentation of this function.EXAMPLES:
sage: N = 10001 sage: K = Zmod(10001) sage: P.<x> = PolynomialRing(K) sage: f = x^3 + 10*x^2 + 5000*x - 222 sage: f.small_roots() [4]
- squarefree_decomposition()#
Returns the squarefree decomposition of this polynomial.
EXAMPLES:
sage: R.<x> = GF(5)[] sage: ((x+1)*(x^2+1)^2*x^3).squarefree_decomposition() (x + 1) * (x^2 + 1)^2 * x^3
- sage.rings.polynomial.polynomial_zmod_flint.make_element(parent, args)#