Univariate Polynomials over domains and fields#
AUTHORS:
William Stein: first version
Martin Albrecht: Added singular coercion.
David Harvey: split off polynomial_integer_dense_ntl.pyx (2007-09)
Robert Bradshaw: split off polynomial_modn_dense_ntl.pyx (2007-09)
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv(parent, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain
A generic class for polynomials over complete discrete valuation domains and fields.
AUTHOR:
Xavier Caruso (2013-03)
- factor_of_slope(slope=None)#
INPUT:
slope – a rational number (default: the first slope in the Newton polygon of
self
)
OUTPUT:
The factor of
self
corresponding to the slopeslope
(i.e. the unique monic divisor ofself
whose slope isslope
and degree is the length ofslope
in the Newton polygon).EXAMPLES:
sage: K = Qp(5) sage: R.<x> = K[] sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_slopes() [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3] sage: g = f.factor_of_slope(0) sage: g.newton_slopes() [0, 0, 0] sage: (f % g).is_zero() True sage: h = f.factor_of_slope() sage: h.newton_slopes() [1] sage: (f % h).is_zero() True
If
slope
is not a slope ofself
, the corresponding factor is \(1\):sage: f.factor_of_slope(-1) 1 + O(5^20)
AUTHOR:
Xavier Caruso (2013-03-20)
- hensel_lift(a)#
Lift \(a\) to a root of this polynomial (using Newton iteration).
If \(a\) is not close enough to a root (so that Newton iteration does not converge), an error is raised.
EXAMPLES:
sage: K = Qp(5, 10) sage: P.<x> = PolynomialRing(K) sage: f = x^2 + 1 sage: root = f.hensel_lift(2); root 2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10) sage: f(root) O(5^10) sage: g = (x^2 + 1)*(x - 7) sage: g.hensel_lift(2) # here, 2 is a multiple root modulo p Traceback (most recent call last): ... ValueError: a is not close enough to a root of this polynomial
AUTHOR:
Xavier Caruso (2013-03-23)
- newton_polygon()#
Returns a list of vertices of the Newton polygon of this polynomial.
Note
If some coefficients have not enough precision an error is raised.
EXAMPLES:
sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_polygon() Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2) sage: g = f + K(0,0)*t^4; g (5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21) sage: g.newton_polygon() Traceback (most recent call last): ... PrecisionError: The coefficient of t^4 has not enough precision
AUTHOR:
Xavier Caruso (2013-03-20)
- newton_slopes(repetition=True)#
Returns a list of the Newton slopes of this polynomial.
These are the valuations of the roots of this polynomial.
If
repetition
isTrue
, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.EXAMPLES:
sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_polygon() Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2) sage: f.newton_slopes() [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3] sage: f.newton_slopes(repetition=False) [1, 0, -1/3]
AUTHOR:
Xavier Caruso (2013-03-20)
- slope_factorization()#
Return a factorization of
self
into a product of factors corresponding to each slope in the Newton polygon.EXAMPLES:
sage: K = Qp(5) sage: R.<x> = K[] sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_slopes() [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3] sage: F = f.slope_factorization() sage: F.prod() == f True sage: for (f,_) in F: ....: print(f.newton_slopes()) [-1/3, -1/3, -1/3, -1/3, -1/3, -1/3] [0, 0, 0] [1]
AUTHOR:
Xavier Caruso (2013-03-20)
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf(parent, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr(parent, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv#
Bases:
sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdvf#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdvr#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element.Polynomial_generic_dense
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain(parent, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element.Polynomial
,sage.structure.element.IntegralDomainElement
- is_unit()#
Return
True
if this polynomial is a unit.EXERCISE (Atiyah-McDonald, Ch 1): Let \(A[x]\) be a polynomial ring in one variable. Then \(f=\sum a_i x^i \in A[x]\) is a unit if and only if \(a_0\) is a unit and \(a_1,\ldots, a_n\) are nilpotent.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ, sparse=True) sage: (2 + z^3).is_unit() False sage: f = -1 + 3*z^3; f 3*z^3 - 1 sage: f.is_unit() False sage: R(-3).is_unit() False sage: R(-1).is_unit() True sage: R(0).is_unit() False
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field(parent, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain
,sage.structure.element.EuclideanDomainElement
- quo_rem(other)#
- Returns a tuple (quotient, remainder) where
self = quotient * other + remainder.
EXAMPLES:
sage: R.<y> = PolynomialRing(QQ) sage: K.<t> = NumberField(y^2 - 2) sage: P.<x> = PolynomialRing(K) sage: x.quo_rem(K(1)) (x, 0) sage: x.xgcd(K(1)) (1, 0, 1)
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element.Polynomial
A generic sparse polynomial.
The
Polynomial_generic_sparse
class defines functionality for sparse polynomials over any base ring. A sparse polynomial is represented using a dictionary which maps each exponent to the corresponding coefficient. The coefficients must never be zero.EXAMPLES:
sage: R.<x> = PolynomialRing(PolynomialRing(QQ, 'y'), sparse=True) sage: f = x^3 - x + 17 sage: type(f) <class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.element_class'> sage: loads(f.dumps()) == f True
A more extensive example:
sage: A.<T> = PolynomialRing(Integers(5),sparse=True) ; f = T^2+1 ; B = A.quo(f) sage: C.<s> = PolynomialRing(B) sage: C Univariate Polynomial Ring in s over Univariate Quotient Polynomial Ring in Tbar over Ring of integers modulo 5 with modulus T^2 + 1 sage: s + T s + Tbar sage: (s + T)**2 s^2 + 2*Tbar*s + 4
- coefficients(sparse=True)#
Return the coefficients of the monomials appearing in
self
.EXAMPLES:
sage: R.<w> = PolynomialRing(Integers(8), sparse=True) sage: f = 5 + w^1997 - w^10000; f 7*w^10000 + w^1997 + 5 sage: f.coefficients() [5, 1, 7]
- degree(gen=None)#
Return the degree of this sparse polynomial.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ, sparse=True) sage: f = 13*z^50000 + 15*z^2 + 17*z sage: f.degree() 50000
- dict()#
Return a new copy of the dict of the underlying elements of
self
.EXAMPLES:
sage: R.<w> = PolynomialRing(Integers(8), sparse=True) sage: f = 5 + w^1997 - w^10000; f 7*w^10000 + w^1997 + 5 sage: d = f.dict(); d {0: 5, 1997: 1, 10000: 7} sage: d[0] = 10 sage: f.dict() {0: 5, 1997: 1, 10000: 7}
- exponents()#
Return the exponents of the monomials appearing in
self
.EXAMPLES:
sage: R.<w> = PolynomialRing(Integers(8), sparse=True) sage: f = 5 + w^1997 - w^10000; f 7*w^10000 + w^1997 + 5 sage: f.exponents() [0, 1997, 10000]
- gcd(other, algorithm=None)#
Return the gcd of this polynomial and
other
INPUT:
other
– a polynomial defined over the same ring as this polynomial.
ALGORITHM:
Two algorithms are provided:
generic
: Uses the generic implementation, which depends on the base ring being a UFD or a field.dense
: The polynomials are converted to the dense representation, their gcd is computed and is converted back to the sparse representation.
Default is
dense
for polynomials over ZZ andgeneric
in the other cases.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ,sparse=True) sage: p = x^6 + 7*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + x + 2 sage: q = 2*x^4 - x^3 - 2*x^2 - 4*x - 1 sage: gcd(p,q) x^2 + x + 1 sage: gcd(p, q, algorithm = "dense") x^2 + x + 1 sage: gcd(p, q, algorithm = "generic") x^2 + x + 1 sage: gcd(p, q, algorithm = "foobar") Traceback (most recent call last): ... ValueError: Unknown algorithm 'foobar'
- integral(var=None)#
Return the integral of this polynomial.
By default, the integration variable is the variable of the polynomial.
Otherwise, the integration variable is the optional parameter
var
Note
The integral is always chosen so that the constant term is 0.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: (1 + 3*x^10 - 2*x^100).integral() -2/101*x^101 + 3/11*x^11 + x
- list(copy=True)#
Return a new copy of the list of the underlying elements of
self
.EXAMPLES:
sage: R.<z> = PolynomialRing(Integers(100), sparse=True) sage: f = 13*z^5 + 15*z^2 + 17*z sage: f.list() [0, 17, 15, 0, 0, 13]
- number_of_terms()#
Return the number of nonzero terms.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ,sparse=True) sage: p = x^100 - 3*x^10 + 12 sage: p.number_of_terms() 3
- quo_rem(other)#
Returns the quotient and remainder of the Euclidean division of
self
andother
.Raises ZerodivisionError if
other
is zero.Raises ArithmeticError if
other
has a nonunit leading coefficient and this causes the Euclidean division to fail.EXAMPLES:
sage: P.<x> = PolynomialRing(ZZ, sparse=True) sage: R.<y> = PolynomialRing(P, sparse=True) sage: f = R.random_element(10) sage: while x.divides(f.leading_coefficient()): ....: f = R.random_element(10) sage: g = y^5 + R.random_element(4) sage: q, r = f.quo_rem(g) sage: f == q*g + r and r.degree() < g.degree() True sage: g = x*y^5 sage: f.quo_rem(g) Traceback (most recent call last): ... ArithmeticError: Division non exact (consider coercing to polynomials over the fraction field) sage: g = 0 sage: f.quo_rem(g) Traceback (most recent call last): ... ZeroDivisionError: Division by zero polynomial
If the leading coefficient of
other
is not a unit, Euclidean division may still work:sage: f = -x*y^10 + 2*x*y^7 + y^3 - 2*x^2*y^2 - y sage: g = x*y^5 sage: f.quo_rem(g) (-y^5 + 2*y^2, y^3 - 2*x^2*y^2 - y)
AUTHORS:
Bruno Grenet (2014-07-09)
- reverse(degree=None)#
Return this polynomial but with the coefficients reversed.
If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: p = x^4 + 2*x^2^100 sage: p.reverse() x^1267650600228229401496703205372 + 2 sage: p.reverse(10) x^6
- shift(n)#
Returns this polynomial multiplied by the power \(x^n\).
If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: p = x^100000 + 2*x + 4 sage: type(p) <class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.element_class'> sage: p.shift(0) x^100000 + 2*x + 4 sage: p.shift(-1) x^99999 + 2 sage: p.shift(-100002) 0 sage: p.shift(2) x^100002 + 2*x^3 + 4*x^2
AUTHOR: - David Harvey (2006-08-06)
- truncate(n)#
Return the polynomial of degree \(< n\) equal to \(self\) modulo \(x^n\).
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: (x^11 + x^10 + 1).truncate(11) x^10 + 1 sage: (x^2^500 + x^2^100 + 1).truncate(2^101) x^1267650600228229401496703205376 + 1
- valuation(p=None)#
Return the valuation of
self
.EXAMPLES:
sage: R.<w> = PolynomialRing(GF(9,'a'), sparse=True) sage: f = w^1997 - w^10000 sage: f.valuation() 1997 sage: R(19).valuation() 0 sage: R(0).valuation() +Infinity
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvf(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvr(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr
- class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field(parent, x=None, check=True, is_gen=False, construct=False)#
Bases:
sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse
,sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field
EXAMPLES:
sage: R.<x> = PolynomialRing(Frac(RR['t']), sparse=True) sage: f = x^3 - x + 17 sage: type(f) <class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class'> sage: loads(f.dumps()) == f True