Fraction Field of Integral Domains#
AUTHORS:
William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
Burcin Erocal
Julian Rüth (2017-06-27): embedding into the field of fractions and its section
EXAMPLES:
Quotienting is a constructor for an element of the fraction field:
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(z + 1.00000000000000 + I)/(z + 0.100000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/(z + 1.10000000000000)
- sage.rings.fraction_field.FractionField(R, names=None)#
Create the fraction field of the integral domain
R
.INPUT:
R
– an integral domainnames
– ignored
EXAMPLES:
We create some example fraction fields:
sage: FractionField(IntegerRing()) Rational Field sage: FractionField(PolynomialRing(RationalField(),'x')) Fraction Field of Univariate Polynomial Ring in x over Rational Field sage: FractionField(PolynomialRing(IntegerRing(),'x')) Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: FractionField(PolynomialRing(RationalField(),2,'x')) Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field
Dividing elements often implicitly creates elements of the fraction field:
sage: x = PolynomialRing(RationalField(), 'x').gen() sage: f = x/(x+1) sage: g = x**3/(x+1) sage: f/g 1/x^2 sage: g/f x^2
The input must be an integral domain:
sage: Frac(Integers(4)) Traceback (most recent call last): ... TypeError: R must be an integral domain.
- class sage.rings.fraction_field.FractionFieldEmbedding#
Bases:
sage.structure.coerce_maps.DefaultConvertMap_unique
The embedding of an integral domain into its field of fractions.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = R.fraction_field().coerce_map_from(R); f Coercion map: From: Univariate Polynomial Ring in x over Rational Field To: Fraction Field of Univariate Polynomial Ring in x over Rational Field
- is_injective()#
Return whether this map is injective.
EXAMPLES:
The map from an integral domain to its fraction field is always injective:
sage: R.<x> = QQ[] sage: R.fraction_field().coerce_map_from(R).is_injective() True
- is_surjective()#
Return whether this map is surjective.
EXAMPLES:
sage: R.<x> = QQ[] sage: R.fraction_field().coerce_map_from(R).is_surjective() False
- section()#
Return a section of this map.
EXAMPLES:
sage: R.<x> = QQ[] sage: R.fraction_field().coerce_map_from(R).section() Section map: From: Fraction Field of Univariate Polynomial Ring in x over Rational Field To: Univariate Polynomial Ring in x over Rational Field
- class sage.rings.fraction_field.FractionFieldEmbeddingSection#
Bases:
sage.categories.map.Section
The section of the embedding of an integral domain into its field of fractions.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = R.fraction_field().coerce_map_from(R).section(); f Section map: From: Fraction Field of Univariate Polynomial Ring in x over Rational Field To: Univariate Polynomial Ring in x over Rational Field
- class sage.rings.fraction_field.FractionField_1poly_field(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>)#
Bases:
sage.rings.fraction_field.FractionField_generic
The fraction field of a univariate polynomial ring over a field.
Many of the functions here are included for coherence with number fields.
- class_number()#
Here for compatibility with number fields and function fields.
EXAMPLES:
sage: R.<t> = GF(5)[]; K = R.fraction_field() sage: K.class_number() 1
- function_field()#
Return the isomorphic function field.
EXAMPLES:
sage: R.<t> = GF(5)[] sage: K = R.fraction_field() sage: K.function_field() Rational function field in t over Finite Field of size 5
See also
sage.rings.function_field.RationalFunctionField.field()
- maximal_order()#
Return the maximal order in this fraction field.
EXAMPLES:
sage: K = FractionField(GF(5)['t']) sage: K.maximal_order() Univariate Polynomial Ring in t over Finite Field of size 5
- ring_of_integers()#
Return the ring of integers in this fraction field.
EXAMPLES:
sage: K = FractionField(GF(5)['t']) sage: K.ring_of_integers() Univariate Polynomial Ring in t over Finite Field of size 5
- class sage.rings.fraction_field.FractionField_generic(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient fields)#
Bases:
sage.rings.ring.Field
The fraction field of an integral domain.
- base_ring()#
Return the base ring of
self
.This is the base ring of the ring which this fraction field is the fraction field of.
EXAMPLES:
sage: R = Frac(ZZ['t']) sage: R.base_ring() Integer Ring
- characteristic()#
Return the characteristic of this fraction field.
EXAMPLES:
sage: R = Frac(ZZ['t']) sage: R.base_ring() Integer Ring sage: R = Frac(ZZ['t']); R.characteristic() 0 sage: R = Frac(GF(5)['w']); R.characteristic() 5
- construction()#
EXAMPLES:
sage: Frac(ZZ['x']).construction() (FractionField, Univariate Polynomial Ring in x over Integer Ring) sage: K = Frac(GF(3)['t']) sage: f, R = K.construction() sage: f(R) Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3 sage: f(R) == K True
- gen(i=0)#
Return the
i
-th generator ofself
.EXAMPLES:
sage: R = Frac(PolynomialRing(QQ,'z',10)); R Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field sage: R.0 z0 sage: R.gen(3) z3 sage: R.3 z3
- is_exact()#
Return if
self
is exact which is if the underlying ring is exact.EXAMPLES:
sage: Frac(ZZ['x']).is_exact() True sage: Frac(CDF['x']).is_exact() False
- is_field(proof=True)#
Return
True
, since the fraction field is a field.EXAMPLES:
sage: Frac(ZZ).is_field() True
- is_finite()#
Tells whether this fraction field is finite.
Note
A fraction field is finite if and only if the associated integral domain is finite.
EXAMPLES:
sage: Frac(QQ['a','b','c']).is_finite() False
- ngens()#
This is the same as for the parent object.
EXAMPLES:
sage: R = Frac(PolynomialRing(QQ,'z',10)); R Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field sage: R.ngens() 10
- random_element(*args, **kwds)#
Return a random element in this fraction field.
The arguments are passed to the random generator of the underlying ring.
EXAMPLES:
sage: F = ZZ['x'].fraction_field() sage: F.random_element() # random (2*x - 8)/(-x^2 + x)
sage: f = F.random_element(degree=5) sage: f.numerator().degree() == f.denominator().degree() True sage: f.denominator().degree() <= 5 True sage: while f.numerator().degree() != 5: ....: f = F.random_element(degree=5)
- ring()#
Return the ring that this is the fraction field of.
EXAMPLES:
sage: R = Frac(QQ['x,y']) sage: R Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field sage: R.ring() Multivariate Polynomial Ring in x, y over Rational Field
- some_elements()#
Return some elements in this field.
EXAMPLES:
sage: R.<x> = QQ[] sage: R.fraction_field().some_elements() [0, 1, x, 2*x, x/(x^2 + 2*x + 1), 1/x^2, ... (2*x^2 + 2)/(x^2 + 2*x + 1), (2*x^2 + 2)/x^3, (2*x^2 + 2)/(x^2 - 1), 2]
- sage.rings.fraction_field.is_FractionField(x)#
Test whether or not
x
inherits fromFractionField_generic
.EXAMPLES:
sage: from sage.rings.fraction_field import is_FractionField sage: is_FractionField(Frac(ZZ['x'])) True sage: is_FractionField(QQ) False