Quotients of Univariate Polynomial Rings#
EXAMPLES:
sage: R.<x> = QQ[]
sage: S = R.quotient(x**3-3*x+1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True
- class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRingFactory#
Bases:
sage.structure.factory.UniqueFactory
Create a quotient of a polynomial ring.
INPUT:
ring
- a univariate polynomial ringpolynomial
- an element ofring
with a unit leading coefficientnames
- (optional) name for the variable
OUTPUT: Creates the quotient ring \(R/I\), where \(R\) is the ring and \(I\) is the principal ideal generated by
polynomial
.EXAMPLES:
We create the quotient ring \(\ZZ[x]/(x^3+7)\), and demonstrate many basic functions with it:
sage: Z = IntegerRing() sage: R = PolynomialRing(Z,'x'); x = R.gen() sage: S = R.quotient(x^3 + 7, 'a'); a = S.gen() sage: S Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^3 + 7 sage: a^3 -7 sage: S.is_field() False sage: a in S True sage: x in S True sage: a in R False sage: S.polynomial_ring() Univariate Polynomial Ring in x over Integer Ring sage: S.modulus() x^3 + 7 sage: S.degree() 3
We create the “iterated” polynomial ring quotient
\[R = (\GF{2}[y]/(y^{2}+y+1))[x]/(x^3 - 5).\]sage: A.<y> = PolynomialRing(GF(2)); A Univariate Polynomial Ring in y over Finite Field of size 2 (using GF2X) sage: B = A.quotient(y^2 + y + 1, 'y2'); B Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1 sage: C = PolynomialRing(B, 'x'); x=C.gen(); C Univariate Polynomial Ring in x over Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1 sage: R = C.quotient(x^3 - 5); R Univariate Quotient Polynomial Ring in xbar over Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1 with modulus x^3 + 1
Next we create a number field, but viewed as a quotient of a polynomial ring over \(\QQ\):
sage: R = PolynomialRing(RationalField(), 'x'); x = R.gen() sage: S = R.quotient(x^3 + 2*x - 5, 'a') sage: S Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5 sage: S.is_field() True sage: S.degree() 3
There are conversion functions for easily going back and forth between quotients of polynomial rings over \(\QQ\) and number fields:
sage: K = S.number_field(); K Number Field in a with defining polynomial x^3 + 2*x - 5 sage: K.polynomial_quotient_ring() Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5
The leading coefficient must be a unit (but need not be 1).
sage: R = PolynomialRing(Integers(9), 'x'); x = R.gen() sage: S = R.quotient(2*x^4 + 2*x^3 + x + 2, 'a') sage: S = R.quotient(3*x^4 + 2*x^3 + x + 2, 'a') Traceback (most recent call last): ... TypeError: polynomial must have unit leading coefficient
Another example:
sage: R.<x> = PolynomialRing(IntegerRing()) sage: f = x^2 + 1 sage: R.quotient(f) Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
This shows that the issue at trac ticket #5482 is solved:
sage: R.<x> = PolynomialRing(QQ) sage: f = x^2-1 sage: R.quotient_by_principal_ideal(f) Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
- create_key(ring, polynomial, names=None)#
Return a unique description of the quotient ring specified by the arguments.
EXAMPLES:
sage: R.<x> = QQ[] sage: PolynomialQuotientRing.create_key(R, x + 1) (Univariate Polynomial Ring in x over Rational Field, x + 1, ('xbar',))
- create_object(version, key)#
Return the quotient ring specified by
key
.EXAMPLES:
sage: R.<x> = QQ[] sage: PolynomialQuotientRing.create_object((8, 0, 0), (R, x^2 - 1, ('xbar'))) Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
- class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_coercion#
Bases:
sage.structure.coerce_maps.DefaultConvertMap_unique
A coercion map from a
PolynomialQuotientRing
to aPolynomialQuotientRing
that restricts to the coercion map on the underlying ring of constants.EXAMPLES:
sage: R.<x> = ZZ[] sage: S.<x> = QQ[] sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1)); f Coercion map: From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1 To: Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
- is_injective()#
Return whether this coercion is injective.
EXAMPLES:
If the modulus of the domain and the codomain is the same and the leading coefficient is a unit in the domain, then the map is injective if the underlying map on the constants is:
sage: R.<x> = ZZ[] sage: S.<x> = QQ[] sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1)) sage: f.is_injective() True
- is_surjective()#
Return whether this coercion is surjective.
EXAMPLES:
If the underlying map on constants is surjective, then this coercion is surjective since the modulus of the codomain divides the modulus of the domain:
sage: R.<x> = ZZ[] sage: f = R.quo(x).coerce_map_from(R.quo(x^2)) sage: f.is_surjective() True
If the modulus of the domain and the codomain is the same, then the map is surjective iff the underlying map on the constants is:
sage: A.<a> = ZqCA(9) sage: R.<x> = A[] sage: S.<x> = A.fraction_field()[] sage: f = S.quo(x^2 + 2).coerce_map_from(R.quo(x^2 + 2)) sage: f.is_surjective() False
- class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain(ring, polynomial, name=None, category=None)#
Bases:
sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic
,sage.rings.ring.IntegralDomain
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: S.<xbar> = R.quotient(x^2 + 1) sage: S Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1 sage: loads(S.dumps()) == S True sage: loads(xbar.dumps()) == xbar True
- field_extension(names)#
Takes a polynomial quotient ring, and returns a tuple with three elements: the NumberField defined by the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the generators to one another, and the inverse isomorphism.
OUTPUT:
field
homomorphism from self to field
homomorphism from field to self
EXAMPLES:
sage: R.<x> = PolynomialRing(Rationals()) sage: S.<alpha> = R.quotient(x^3-2) sage: F.<b>, f, g = S.field_extension() sage: F Number Field in b with defining polynomial x^3 - 2 sage: a = F.gen() sage: f(alpha) b sage: g(a) alpha
Note that the parent ring must be an integral domain:
sage: R.<x> = GF(25,'f25')['x'] sage: S.<a> = R.quo(x^3 - 2) sage: F, g, h = S.field_extension('b') Traceback (most recent call last): ... AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'
Over a finite field, the corresponding field extension is not a number field:
sage: R.<x> = GF(25, 'a')['x'] sage: S.<a> = R.quo(x^3 + 2*x + 1) sage: F, g, h = S.field_extension('b') sage: h(F.0^2 + 3) a^2 + 3 sage: g(x^2 + 2) b^2 + 2
We do an example involving a relative number field:
sage: R.<x> = QQ['x'] sage: K.<a> = NumberField(x^3 - 2) sage: S.<X> = K['X'] sage: Q.<b> = S.quo(X^3 + 2*X + 1) sage: Q.field_extension('b') (Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field, ... Defn: b |--> b, Relative number field morphism: From: Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field To: Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^3 - 2 with modulus X^3 + 2*X + 1 Defn: b |--> b a |--> a)
We slightly change the example above so it works.
sage: R.<x> = QQ['x'] sage: K.<a> = NumberField(x^3 - 2) sage: S.<X> = K['X'] sage: f = (X+a)^3 + 2*(X+a) + 1 sage: f X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3 sage: Q.<z> = S.quo(f) sage: F.<w>, g, h = Q.field_extension() sage: c = g(z) sage: f(c) 0 sage: h(g(z)) z sage: g(h(w)) w
AUTHORS:
Craig Citro (2006-08-07)
William Stein (2006-08-06)
- class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field(ring, polynomial, name=None, category=None)#
Bases:
sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain
,sage.rings.ring.Field
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<xbar> = R.quotient(x^2 + 1) sage: S Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1 sage: loads(S.dumps()) == S True sage: loads(xbar.dumps()) == xbar True
- base_field()#
Alias for base_ring, when we’re defined over a field.
- complex_embeddings(prec=53)#
Return all homomorphisms of this ring into the approximate complex field with precision prec.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^5 + x + 17 sage: k = R.quotient(f) sage: v = k.complex_embeddings(100) sage: [phi(k.0^2) for phi in v] [2.9757207403766761469671194565, -2.4088994371613850098316292196 + 1.9025410530350528612407363802*I, -2.4088994371613850098316292196 - 1.9025410530350528612407363802*I, 0.92103906697304693634806949137 - 3.0755331188457794473265418086*I, 0.92103906697304693634806949137 + 3.0755331188457794473265418086*I]
- class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic(ring, polynomial, name=None, category=None)#
Bases:
sage.rings.quotient_ring.QuotientRing_generic
Quotient of a univariate polynomial ring by an ideal.
EXAMPLES:
sage: R.<x> = PolynomialRing(Integers(8)); R Univariate Polynomial Ring in x over Ring of integers modulo 8 sage: S.<xbar> = R.quotient(x^2 + 1); S Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8 with modulus x^2 + 1
We demonstrate object persistence.
sage: loads(S.dumps()) == S True sage: loads(xbar.dumps()) == xbar True
We create some sample homomorphisms;
sage: R.<x> = PolynomialRing(ZZ) sage: S = R.quo(x^2-4) sage: f = S.hom([2]) sage: f Ring morphism: From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 - 4 To: Integer Ring Defn: xbar |--> 2 sage: f(x) 2 sage: f(x^2 - 4) 0 sage: f(x^2) 4
- Element#
alias of
sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement
- S_class_group(S, proof=True)#
If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), return a list of generators of the \(S\)-class group of \(D\).
NOTE:
Since the
ideal
function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs(gen, order)
, wheregen
is a tuple of generators of an ideal \(I\) andorder
is the order of \(I\) in the \(S\)-class group.INPUT:
S
- a set of primes of the coefficient ringproof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of the \(S\)-class group, in the form
(gen, order)
, wheregen
is a tuple of elements generating a fractional ideal \(I\) andorder
is the order of \(I\) in the \(S\)-class group.EXAMPLES:
A trivial algebra over \(\QQ(\sqrt{-5})\) has the same class group as its base:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: S.<xbar> = R.quotient(x) sage: S.S_class_group([]) [((2, -a + 1), 2)]
When we include the prime \((2, -a+1)\), the \(S\)-class group becomes trivial:
sage: S.S_class_group([K.ideal(2, -a+1)]) []
Here is an example where the base and the extension both contribute to the class group:
sage: K.<a> = QuadraticField(-5) sage: K.class_group() Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5 with a = 2.236067977499790?*I sage: R.<x> = K[] sage: S.<xbar> = R.quotient(x^2 + 23) sage: S.S_class_group([]) [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)] sage: S.S_class_group([K.ideal(3, a-1)]) [] sage: S.S_class_group([K.ideal(2, a+1)]) [] sage: S.S_class_group([K.ideal(a)]) [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
Now we take an example over a nontrivial base with two factors, each contributing to the class group:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31)) sage: S.S_class_group([]) # representation varies, not tested [((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 6), ((-5/4*xbar^2 - 115/4, 1/4*a*xbar^2 + 23/4*a, -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16, 1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a), 2)]
By using the ideal \((a)\), we cut the part of the class group coming from \(x^2 + 31\) from 12 to 2, i.e. we lose a generator of order 6 (this was fixed in trac ticket #14489):
sage: S.S_class_group([K.ideal(a)]) # representation varies, not tested [((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2)]
Note that all the returned values live where we expect them to:
sage: CG = S.S_class_group([]) sage: type(CG[0][0][1]) <class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic_with_category.element_class'> sage: type(CG[0][1]) <class 'sage.rings.integer.Integer'>
- S_units(S, proof=True)#
If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), return a list of generators of the group of \(S\)-units of \(D\).
INPUT:
S
- a set of primes of the base fieldproof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of the \(S\)-unit group, in the form
(gen, order)
, wheregen
is a unit of orderorder
.EXAMPLES:
sage: K.<a> = QuadraticField(-3) sage: K.unit_group() Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I sage: K.<a> = QQ['x'].quotient(x^2 + 3) sage: u,o = K.S_units([])[0]; o 6 sage: 2*u - 1 in {a, -a} True sage: u^6 1 sage: u^3 -1 sage: 2*u^2 + 1 in {a, -a} True
sage: K.<a> = QuadraticField(-3) sage: y = polygen(K) sage: L.<b> = K['y'].quotient(y^3 + 5); L Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I with modulus y^3 + 5 sage: [u for u, o in L.S_units([]) if o is Infinity] [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] sage: [u for u, o in L.S_units([K.ideal(1/2*a - 3/2)]) if o is Infinity] [(-1/6*a - 1/2)*b^2 + (1/3*a - 1)*b + 4/3*a, (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] sage: [u for u, o in L.S_units([K.ideal(2)]) if o is Infinity] [(1/2*a - 1/2)*b^2 + (a + 1)*b + 3, (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a + 1/2, (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a - 1/2, (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
Note that all the returned values live where we expect them to:
sage: U = L.S_units([]) sage: type(U[0][0]) <class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'> sage: type(U[0][1]) <class 'sage.rings.integer.Integer'> sage: type(U[1][1]) <class 'sage.rings.infinity.PlusInfinity'>
- ambient()#
- base_ring()#
Return the base ring of the polynomial ring, of which this ring is a quotient.
EXAMPLES:
The base ring of \(\ZZ[z]/(z^3 + z^2 + z + 1)\) is \(\ZZ\).
sage: R.<z> = PolynomialRing(ZZ) sage: S.<beta> = R.quo(z^3 + z^2 + z + 1) sage: S.base_ring() Integer Ring
Next we make a polynomial quotient ring over \(S\) and ask for its base ring.
sage: T.<t> = PolynomialRing(S) sage: W = T.quotient(t^99 + 99) sage: W.base_ring() Univariate Quotient Polynomial Ring in beta over Integer Ring with modulus z^3 + z^2 + z + 1
- cardinality()#
Return the number of elements of this quotient ring.
order
is an alias ofcardinality
.EXAMPLES:
sage: R.<x> = ZZ[] sage: R.quo(1).cardinality() 1 sage: R.quo(x^3-2).cardinality() +Infinity sage: R.quo(1).order() 1 sage: R.quo(x^3-2).order() +Infinity
sage: R.<x> = GF(9,'a')[] sage: R.quo(2*x^3+x+1).cardinality() 729 sage: GF(9,'a').extension(2*x^3+x+1).cardinality() 729 sage: R.quo(2).cardinality() 1
- characteristic()#
Return the characteristic of this quotient ring.
This is always the same as the characteristic of the base ring.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ) sage: S.<a> = R.quo(z - 19) sage: S.characteristic() 0 sage: R.<x> = PolynomialRing(GF(9,'a')) sage: S = R.quotient(x^3 + 1) sage: S.characteristic() 3
- class_group(proof=True)#
If self is a quotient ring of a polynomial ring over a number field \(K\), by a polynomial of nonzero discriminant, return a list of generators of the class group.
NOTE:
Since the
ideal
function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs(gen, order)
, wheregen
is a tuple of generators of an ideal \(I\) andorder
is the order of \(I\) in the class group.INPUT:
proof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of pairs
(gen, order)
, wheregen
is a tuple of elements generating a fractional ideal andorder
is the order of \(I\) in the class group.EXAMPLES:
sage: K.<a> = QuadraticField(-3) sage: K.class_group() Class group of order 1 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I sage: K.<a> = QQ['x'].quotient(x^2 + 3) sage: K.class_group() []
A trivial algebra over \(\QQ(\sqrt{-5})\) has the same class group as its base:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: S.<xbar> = R.quotient(x) sage: S.class_group() [((2, -a + 1), 2)]
The same algebra constructed in a different way:
sage: K.<a> = QQ['x'].quotient(x^2 + 5) sage: K.class_group(()) [((2, a + 1), 2)]
Here is an example where the base and the extension both contribute to the class group:
sage: K.<a> = QuadraticField(-5) sage: K.class_group() Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5 with a = 2.236067977499790?*I sage: R.<x> = K[] sage: S.<xbar> = R.quotient(x^2 + 23) sage: S.class_group() [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
Here is an example of a product of number fields, both of which contribute to the class group:
sage: R.<x> = QQ[] sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 47)) sage: S.class_group() [((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3), ((-1/12*xbar^2 - 23/12, -1/48*xbar^3 - 1/48*xbar^2 - 23/48*xbar - 23/48), 5)]
Now we take an example over a nontrivial base with two factors, each contributing to the class group:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31)) sage: S.class_group() # representation varies, not tested [((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 6), ((-5/4*xbar^2 - 115/4, 1/4*a*xbar^2 + 23/4*a, -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16, 1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a), 2)]
Note that all the returned values live where we expect them to:
sage: CG = S.class_group() sage: type(CG[0][0][1]) <class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic_with_category.element_class'> sage: type(CG[0][1]) <class 'sage.rings.integer.Integer'>
- construction()#
Functorial construction of
self
EXAMPLES:
sage: P.<t>=ZZ[] sage: Q = P.quo(5+t^2) sage: F, R = Q.construction() sage: F(R) == Q True sage: P.<t> = GF(3)[] sage: Q = P.quo([2+t^2]) sage: F, R = Q.construction() sage: F(R) == Q True
AUTHOR:
– Simon King (2010-05)
- cover_ring()#
Return the polynomial ring of which this ring is the quotient.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S = R.quotient(x^2-2) sage: S.polynomial_ring() Univariate Polynomial Ring in x over Rational Field
- degree()#
Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.
EXAMPLES:
sage: R.<x> = PolynomialRing(GF(3)) sage: S = R.quotient(x^2005 + 1) sage: S.degree() 2005
- discriminant(v=None)#
Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S = R.quotient(x^3 + x^2 + x + 1) sage: S.discriminant() -16 sage: S = R.quotient((x + 1) * (x + 1)) sage: S.discriminant() 0
The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:
sage: S = R.quotient(x^2 - 8) sage: S.number_field().discriminant() 8 sage: S.discriminant() 32
- gen(n=0)#
Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S = R.quotient(x^2 - 8, 'gamma') sage: S.gen() gamma
- is_field(proof=True)#
Return whether or not this quotient ring is a field.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ) sage: S = R.quo(z^2-2) sage: S.is_field() False sage: R.<x> = PolynomialRing(QQ) sage: S = R.quotient(x^2 - 2) sage: S.is_field() True
If proof is
True
, requires theis_irreducible
method of the modulus to be implemented:sage: R1.<x> = Qp(2)[] sage: F1 = R1.quotient_ring(x^2+x+1) sage: R2.<x> = F1[] sage: F2 = R2.quotient_ring(x^2+x+1) sage: F2.is_field() Traceback (most recent call last): ... NotImplementedError: cannot rewrite Univariate Quotient Polynomial Ring in xbar over 2-adic Field with capped relative precision 20 with modulus (1 + O(2^20))*x^2 + (1 + O(2^20))*x + 1 + O(2^20) as an isomorphic ring sage: F2.is_field(proof = False) False
- is_finite()#
Return whether or not this quotient ring is finite.
EXAMPLES:
sage: R.<x> = ZZ[] sage: R.quo(1).is_finite() True sage: R.quo(x^3-2).is_finite() False
sage: R.<x> = GF(9,'a')[] sage: R.quo(2*x^3+x+1).is_finite() True sage: R.quo(2).is_finite() True
sage: P.<v> = GF(2)[] sage: P.quotient(v^2-v).is_finite() True
- is_integral_domain(proof=True)#
Return whether or not this quotient ring is an integral domain.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ) sage: S = R.quotient(z^2 - z) sage: S.is_integral_domain() False sage: T = R.quotient(z^2 + 1) sage: T.is_integral_domain() True sage: U = R.quotient(-1) sage: U.is_integral_domain() False sage: R2.<y> = PolynomialRing(R) sage: S2 = R2.quotient(z^2 - y^3) sage: S2.is_integral_domain() True sage: S3 = R2.quotient(z^2 - 2*y*z + y^2) sage: S3.is_integral_domain() False sage: R.<z> = PolynomialRing(ZZ.quotient(4)) sage: S = R.quotient(z-1) sage: S.is_integral_domain() False
- krull_dimension()#
Return the Krull dimension.
This is the Krull dimension of the base ring, unless the quotient is zero.
EXAMPLES:
sage: R = PolynomialRing(ZZ,'x').quotient(x**6-1) sage: R.krull_dimension() 1 sage: R = PolynomialRing(ZZ,'x').quotient(1) sage: R.krull_dimension() -1
- lift(x)#
Return an element of the ambient ring mapping to the given argument.
EXAMPLES:
sage: P.<x> = QQ[] sage: Q = P.quotient(x^2+2) sage: Q.lift(Q.0^3) -2*x sage: Q(-2*x) -2*xbar sage: Q.0^3 -2*xbar
- modulus()#
Return the polynomial modulus of this quotient ring.
EXAMPLES:
sage: R.<x> = PolynomialRing(GF(3)) sage: S = R.quotient(x^2 - 2) sage: S.modulus() x^2 + 1
- ngens()#
Return the number of generators of this quotient ring over the base ring. This function always returns 1.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<y> = PolynomialRing(R) sage: T.<z> = S.quotient(y + x) sage: T Univariate Quotient Polynomial Ring in z over Univariate Polynomial Ring in x over Rational Field with modulus y + x sage: T.ngens() 1
- number_field()#
Return the number field isomorphic to this quotient polynomial ring, if possible.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<alpha> = R.quotient(x^29 - 17*x - 1) sage: K = S.number_field() sage: K Number Field in alpha with defining polynomial x^29 - 17*x - 1 sage: alpha = K.gen() sage: alpha^29 17*alpha + 1
- order()#
Return the number of elements of this quotient ring.
order
is an alias ofcardinality
.EXAMPLES:
sage: R.<x> = ZZ[] sage: R.quo(1).cardinality() 1 sage: R.quo(x^3-2).cardinality() +Infinity sage: R.quo(1).order() 1 sage: R.quo(x^3-2).order() +Infinity
sage: R.<x> = GF(9,'a')[] sage: R.quo(2*x^3+x+1).cardinality() 729 sage: GF(9,'a').extension(2*x^3+x+1).cardinality() 729 sage: R.quo(2).cardinality() 1
- polynomial_ring()#
Return the polynomial ring of which this ring is the quotient.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S = R.quotient(x^2-2) sage: S.polynomial_ring() Univariate Polynomial Ring in x over Rational Field
- random_element(*args, **kwds)#
Return a random element of this quotient ring.
INPUT:
*args
,**kwds
- Arguments for randomization that are passed on to therandom_element
method of the polynomial ring, and from there to the base ring
OUTPUT:
Element of this quotient ring
EXAMPLES:
sage: F1.<a> = GF(2^7) sage: P1.<x> = F1[] sage: F2 = F1.extension(x^2+x+1, 'u') sage: F2.random_element().parent() is F2 True
- retract(x)#
Return the coercion of x into this polynomial quotient ring.
The rings that coerce into the quotient ring canonically are:
this ring
any canonically isomorphic ring
anything that coerces into the ring of which this is the quotient
- selmer_generators(S, m, proof=True)#
If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), compute the Selmer group \(D(S,m)\). This is the subgroup of \(D^*/(D^*)^m\) consisting of elements \(a\) such that \(D(\sqrt[m]{a})/D\) is unramified at all primes of \(D\) lying above a place outside of \(S\).
INPUT:
S
- A set of primes of the coefficient ring (which is a number field).m
- a positive integerproof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of \(D(S,m)\).
EXAMPLES:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: D.<T> = R.quotient(x) sage: D.selmer_generators((), 2) [-1, 2] sage: D.selmer_generators([K.ideal(2, -a+1)], 2) [2, -1] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 2) [2, a + 1, -1] sage: D.selmer_generators((K.ideal(2, -a+1),K.ideal(3, a+1)), 4) [2, a + 1, -1] sage: D.selmer_generators([K.ideal(2, -a+1)], 3) [2] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 3) [2, a + 1] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3) [2, a + 1, a]
- selmer_group(S, m, proof=True)#
If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), compute the Selmer group \(D(S,m)\). This is the subgroup of \(D^*/(D^*)^m\) consisting of elements \(a\) such that \(D(\sqrt[m]{a})/D\) is unramified at all primes of \(D\) lying above a place outside of \(S\).
INPUT:
S
- A set of primes of the coefficient ring (which is a number field).m
- a positive integerproof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of \(D(S,m)\).
EXAMPLES:
sage: K.<a> = QuadraticField(-5) sage: R.<x> = K[] sage: D.<T> = R.quotient(x) sage: D.selmer_generators((), 2) [-1, 2] sage: D.selmer_generators([K.ideal(2, -a+1)], 2) [2, -1] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 2) [2, a + 1, -1] sage: D.selmer_generators((K.ideal(2, -a+1),K.ideal(3, a+1)), 4) [2, a + 1, -1] sage: D.selmer_generators([K.ideal(2, -a+1)], 3) [2] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 3) [2, a + 1] sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3) [2, a + 1, a]
- units(proof=True)#
If this quotient ring is over a number field K, by a polynomial of nonzero discriminant, returns a list of generators of the units.
INPUT:
proof
- if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of the unit group, in the form
(gen, order)
, wheregen
is a unit of orderorder
.EXAMPLES:
sage: K.<a> = QuadraticField(-3) sage: K.unit_group() Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I sage: K.<a> = QQ['x'].quotient(x^2 + 3) sage: u = K.units()[0][0] sage: 2*u - 1 in {a, -a} True sage: u^6 1 sage: u^3 -1 sage: 2*u^2 + 1 in {a, -a} True sage: K.<a> = QQ['x'].quotient(x^2 + 5) sage: K.units(()) [(-1, 2)]
sage: K.<a> = QuadraticField(-3) sage: y = polygen(K) sage: L.<b> = K['y'].quotient(y^3 + 5); L Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I with modulus y^3 + 5 sage: [u for u, o in L.units() if o is Infinity] [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] sage: L.<b> = K.extension(y^3 + 5) sage: L.unit_group() Unit group with structure C6 x Z x Z of Number Field in b with defining polynomial x^3 + 5 over its base field sage: L.unit_group().gens() # abstract generators (u0, u1, u2) sage: L.unit_group().gens_values()[1:] [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
Note that all the returned values live where we expect them to:
sage: L.<b> = K['y'].quotient(y^3 + 5) sage: U = L.units() sage: type(U[0][0]) <class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'> sage: type(U[0][1]) <class 'sage.rings.integer.Integer'> sage: type(U[1][1]) <class 'sage.rings.infinity.PlusInfinity'>
- sage.rings.polynomial.polynomial_quotient_ring.is_PolynomialQuotientRing(x)#