Base class for multivariate polynomial rings#
- class sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base#
Bases:
sage.rings.ring.CommutativeRing
Create a polynomial ring in several variables over a commutative ring.
EXAMPLES:
sage: R.<x,y> = ZZ['x,y']; R Multivariate Polynomial Ring in x, y over Integer Ring sage: class CR(CommutativeRing): ....: def __init__(self): ....: CommutativeRing.__init__(self,self) ....: def __call__(self,x): ....: return None sage: cr = CR() sage: cr.is_commutative() True sage: cr['x,y'] Multivariate Polynomial Ring in x, y over <__main__.CR_with_category object at ...>
- change_ring(base_ring=None, names=None, order=None)#
Return a new multivariate polynomial ring which isomorphic to self, but has a different ordering given by the parameter ‘order’ or names given by the parameter ‘names’.
INPUT:
base_ring
– a base ringnames
– variable namesorder
– a term order
EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(GF(127),3,order='lex') sage: x > y^2 True sage: Q.<x,y,z> = P.change_ring(order='degrevlex') sage: x > y^2 False
- characteristic()#
Return the characteristic of this polynomial ring.
EXAMPLES:
sage: R = PolynomialRing(QQ, 'x', 3) sage: R.characteristic() 0 sage: R = PolynomialRing(GF(7),'x', 20) sage: R.characteristic() 7
- completion(names, prec=20, extras={})#
Return the completion of self with respect to the ideal generated by the variable(s)
names
.INPUT:
names
– variable or list/tuple of variables (given either as elements of the polynomial ring or as strings)prec
– default precision of resulting power series ringextras
– passed as keywords toPowerSeriesRing
EXAMPLES:
sage: P.<x,y,z,w> = PolynomialRing(ZZ) sage: P.completion('w') Power Series Ring in w over Multivariate Polynomial Ring in x, y, z over Integer Ring sage: P.completion((w,x,y)) Multivariate Power Series Ring in w, x, y over Univariate Polynomial Ring in z over Integer Ring sage: Q.<w,x,y,z> = P.completion(); Q Multivariate Power Series Ring in w, x, y, z over Integer Ring sage: H = PolynomialRing(PolynomialRing(ZZ,3,'z'),4,'f'); H Multivariate Polynomial Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring sage: H.completion(H.gens()) Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring sage: H.completion(H.gens()[2]) Power Series Ring in f2 over Multivariate Polynomial Ring in f0, f1, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
- construction()#
Returns a functor F and base ring R such that F(R) == self.
EXAMPLES:
sage: S = ZZ['x,y'] sage: F, R = S.construction(); R Integer Ring sage: F MPoly[x,y] sage: F(R) == S True sage: F(R) == ZZ['x']['y'] False
- flattening_morphism()#
Return the flattening morphism of this polynomial ring
EXAMPLES:
sage: QQ['a','b']['x','y'].flattening_morphism() Flattening morphism: From: Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Rational Field To: Multivariate Polynomial Ring in a, b, x, y over Rational Field sage: QQ['x,y'].flattening_morphism() Identity endomorphism of Multivariate Polynomial Ring in x, y over Rational Field
- gen(n=0)#
- irrelevant_ideal()#
Return the irrelevant ideal of this multivariate polynomial ring.
This is the ideal generated by all of the indeterminate generators of this ring.
EXAMPLES:
sage: R.<x,y,z> = QQ[] sage: R.irrelevant_ideal() Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
- is_exact()#
Test whether this multivariate polynomial ring is defined over an exact base ring.
EXAMPLES:
sage: PolynomialRing(QQ, 2, 'x').is_exact() True sage: PolynomialRing(RDF, 2, 'x').is_exact() False
- is_field(proof=True)#
Test whether this multivariate polynomial ring is a field.
A polynomial ring is a field when there are no variable and the base ring is a field.
EXAMPLES:
sage: PolynomialRing(QQ, 'x', 2).is_field() False sage: PolynomialRing(QQ, 'x', 0).is_field() True sage: PolynomialRing(ZZ, 'x', 0).is_field() False sage: PolynomialRing(Zmod(1), names=['x','y']).is_finite() True
- is_integral_domain(proof=True)#
EXAMPLES:
sage: ZZ['x,y'].is_integral_domain() True sage: Integers(8)['x,y'].is_integral_domain() False
- is_noetherian()#
EXAMPLES:
sage: ZZ['x,y'].is_noetherian() True sage: Integers(8)['x,y'].is_noetherian() True
- krull_dimension()#
- macaulay_resultant(*args, **kwds)#
This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references listed below: It calculates the Macaulay resultant for a list of polynomials, up to sign!
REFERENCES:
AUTHORS:
Hao Chen, Solomon Vishkautsan (7-2014)
INPUT:
args
– a list of \(n\) homogeneous polynomials in \(n\) variables.works when
args[0]
is the list of polynomials, orargs
is itself the list of polynomials
kwds:
sparse
– boolean (optional - default:False
)if
True
function creates sparse matrices.
OUTPUT:
the macaulay resultant, an element of the base ring of
self
Todo
Working with sparse matrices should usually give faster results, but with the current implementation it actually works slower. There should be a way to improve performance with regards to this.
EXAMPLES:
The number of polynomials has to match the number of variables:
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant([y,x+z]) Traceback (most recent call last): ... TypeError: number of polynomials(= 2) must equal number of variables (= 3)
The polynomials need to be all homogeneous:
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant([y, x+z, z+x^3]) Traceback (most recent call last): ... TypeError: resultant for non-homogeneous polynomials is not supported
All polynomials must be in the same ring:
sage: S.<x,y> = PolynomialRing(QQ, 2) sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: S.macaulay_resultant([y, z+x]) Traceback (most recent call last): ... TypeError: not all inputs are polynomials in the calling ring
The following example recreates Proposition 2.10 in Ch.3 in [CLO2005]:
sage: K.<x,y> = PolynomialRing(ZZ, 2) sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2]) sage: R.macaulay_resultant(flist) u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 + u1*u2*u3*u5*u7 + u0*u2*u4*u5*u7 - u0*u1*u5^2*u7 + u1*u2*u3*u4*u8 - u0*u2*u4^2*u8 - u1^2*u3*u5*u8 + u0*u1*u4*u5*u8 + u2^2*u3^2*u9 - 2*u0*u2*u3*u5*u9 + u0^2*u5^2*u9 - u1*u2*u3^2*u10 + u0*u2*u3*u4*u10 + u0*u1*u3*u5*u10 - u0^2*u4*u5*u10 + u1^2*u3^2*u11 - 2*u0*u1*u3*u4*u11 + u0^2*u4^2*u11
The following example degenerates into the determinant of a \(3*3\) matrix:
sage: K.<x,y> = PolynomialRing(ZZ, 2) sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1]) sage: R.macaulay_resultant(flist) -u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8
The following example is by Patrick Ingram (arXiv 1310.4114):
sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens() sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens() sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2 sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2 sage: f2 = x0*x1 - x2^2 sage: flist = [f0,f1,f2] sage: R.macaulay_resultant([f0,f1,f2]) y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
A simple example with constant rational coefficients:
sage: R.<x,y,z,w> = PolynomialRing(QQ,4) sage: R.macaulay_resultant([w,z,y,x]) 1
An example where the resultant vanishes:
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant([x+y,y^2,x]) 0
An example of bad reduction at a prime \(p = 5\):
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant([y,x^3+25*y^2*x,5*z]) 125
The input can given as an unpacked list of polynomials:
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant(y,x^3+25*y^2*x,5*z) 125
An example when the coefficients live in a finite field:
sage: F = FiniteField(11) sage: R.<x,y,z,w> = PolynomialRing(F,4) sage: R.macaulay_resultant([z,x^3,5*y,w]) 4
Example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):
sage: R.<x,y,z> = PolynomialRing(QQ,3) sage: R.macaulay_resultant([y, x+z, z^2]) -1
When there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:
sage: R.<x> = PolynomialRing(QQ,1) sage: f = x^2+1; g = x^5+1 sage: fh = f.homogenize() sage: gh = g.homogenize() sage: RH = fh.parent() sage: f.resultant(g) == RH.macaulay_resultant([fh,gh]) True
- monomial(*exponents)#
Return the monomial with given exponents.
EXAMPLES:
sage: R.<x,y,z> = PolynomialRing(ZZ, 3) sage: R.monomial(1,1,1) x*y*z sage: e=(1,2,3) sage: R.monomial(*e) x*y^2*z^3 sage: m = R.monomial(1,2,3) sage: R.monomial(*m.degrees()) == m True
- monomials_of_degree(degree)#
Return a list of all monomials of the given total degree in this multivariate polynomial ring.
EXAMPLES:
sage: R.<x,y,z> = ZZ[] sage: mons = R.monomials_of_degree(2) sage: mons [x^2, x*y, x*z, y^2, y*z, z^2]
The number of such monomials equals \(\binom{n+k-1}{k}\) where \(n\) is the number of variables and \(k\) the degree:
sage: len(mons) == binomial(3+2-1,2) True
- ngens()#
- random_element(degree=2, terms=None, choose_degree=False, *args, **kwargs)#
Return a random polynomial of at most degree \(d\) and at most \(t\) terms.
First monomials are chosen uniformly random from the set of all possible monomials of degree up to \(d\) (inclusive). This means that it is more likely that a monomial of degree \(d\) appears than a monomial of degree \(d-1\) because the former class is bigger.
Exactly \(t\) distinct monomials are chosen this way and each one gets a random coefficient (possibly zero) from the base ring assigned.
The returned polynomial is the sum of this list of terms.
INPUT:
degree
– maximal degree (likely to be reached) (default: 2)terms
– number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.choose_degree
– choose degrees of monomials randomly first rather than monomials uniformly random.**kwargs
– passed to the random element generator of the base ring
EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(QQ) sage: f = P.random_element(2, 5) sage: f.degree() <= 2 True sage: f.parent() is P True sage: len(list(f)) <= 5 True sage: f = P.random_element(2, 5, choose_degree=True) sage: f.degree() <= 2 True sage: f.parent() is P True sage: len(list(f)) <= 5 True
Stacked rings:
sage: R = QQ['x,y'] sage: S = R['t,u'] sage: f = S._random_nonzero_element(degree=2, terms=1) sage: len(list(f)) 1 sage: f.degree() <= 2 True sage: f.parent() is S True
Default values apply if no degree and/or number of terms is provided:
sage: M = random_matrix(QQ['x,y,z'], 2, 2) sage: all(a.degree() <= 2 for a in M.list()) True sage: all(len(list(a)) <= 5 for a in M.list()) True sage: M = random_matrix(QQ['x,y,z'], 2, 2, terms=1, degree=2) sage: all(a.degree() <= 2 for a in M.list()) True sage: all(len(list(a)) <= 1 for a in M.list()) True sage: P.random_element(0, 1) in QQ True sage: P.random_element(2, 0) 0 sage: R.<x> = PolynomialRing(Integers(3), 1) sage: f = R.random_element() sage: f.degree() <= 2 True sage: len(list(f)) <= 3 True
To produce a dense polynomial, pick
terms=Infinity
:sage: P.<x,y,z> = GF(127)[] sage: f = P.random_element(degree=2, terms=Infinity) sage: while len(list(f)) != 10: ....: f = P.random_element(degree=2, terms=Infinity) sage: f = P.random_element(degree=3, terms=Infinity) sage: while len(list(f)) != 20: ....: f = P.random_element(degree=3, terms=Infinity) sage: f = P.random_element(degree=3, terms=Infinity, choose_degree=True) sage: while len(list(f)) != 20: ....: f = P.random_element(degree=3, terms=Infinity)
The number of terms is silently reduced to the maximum available if more terms are requested:
sage: P.<x,y,z> = GF(127)[] sage: f = P.random_element(degree=2, terms=1000) sage: len(list(f)) <= 10 True
- remove_var(order=None, *var)#
Remove a variable or sequence of variables from self.
If
order
is not specified, then the subring inherits the term order of the original ring, if possible.EXAMPLES:
sage: P.<x,y,z,w> = PolynomialRing(ZZ) sage: P.remove_var(z) Multivariate Polynomial Ring in x, y, w over Integer Ring sage: P.remove_var(z,x) Multivariate Polynomial Ring in y, w over Integer Ring sage: P.remove_var(y,z,x) Univariate Polynomial Ring in w over Integer Ring
Removing all variables results in the base ring:
sage: P.remove_var(y,z,x,w) Integer Ring
If possible, the term order is kept:
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='deglex') sage: R.remove_var(y).term_order() Degree lexicographic term order sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='lex') sage: R.remove_var(y).term_order() Lexicographic term order
Be careful with block orders when removing variables:
sage: R.<x,y,z,u,v> = PolynomialRing(ZZ, order='deglex(2),lex(3)') sage: R.remove_var(x,y,z) Traceback (most recent call last): ... ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring sage: R.remove_var(x,y,z, order='degrevlex') Multivariate Polynomial Ring in u, v over Integer Ring
- repr_long()#
Return structured string representation of self.
EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(QQ,order=TermOrder('degrevlex',1)+TermOrder('lex',2)) sage: print(P.repr_long()) Polynomial Ring Base Ring : Rational Field Size : 3 Variables Block 0 : Ordering : degrevlex Names : x Block 1 : Ordering : lex Names : y, z
- term_order()#
- univariate_ring(x)#
Return a univariate polynomial ring whose base ring comprises all but one variables of self.
INPUT:
x
– a variable of self.
EXAMPLES:
sage: P.<x,y,z> = QQ[] sage: P.univariate_ring(y) Univariate Polynomial Ring in y over Multivariate Polynomial Ring in x, z over Rational Field
- variable_names_recursive(depth=None)#
Returns the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.
EXAMPLES:
sage: R = QQ['x,y']['z,w'] sage: R.variable_names_recursive() ('x', 'y', 'z', 'w') sage: R.variable_names_recursive(3) ('y', 'z', 'w')
- weyl_algebra()#
Return the Weyl algebra generated from
self
.EXAMPLES:
sage: R = QQ['x,y,z'] sage: W = R.weyl_algebra(); W Differential Weyl algebra of polynomials in x, y, z over Rational Field sage: W.polynomial_ring() == R True
- sage.rings.polynomial.multi_polynomial_ring_base.is_MPolynomialRing(x)#
- sage.rings.polynomial.multi_polynomial_ring_base.unpickle_MPolynomialRing_generic(base_ring, n, names, order)#
- sage.rings.polynomial.multi_polynomial_ring_base.unpickle_MPolynomialRing_generic_v1(base_ring, n, names, order)#