Modular forms for Hecke triangle groups#
AUTHORS:
Jonas Jermann (2013): initial version
- class sage.modular.modform_hecketriangle.space.CuspForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) cusp forms for the given group, base ring, weight and multiplier
- coordinate_vector(v)#
Return the coordinate vector of
v
with respect to the basisself.gens()
.INPUT:
v
– An element ofself
.
OUTPUT:
An element of
self.module()
, namely the corresponding coordinate vector ofv
with respect to the basisself.gens()
.The module is the free module over the coefficient ring of
self
with the dimension ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: MF = CuspForms(n=12, k=72/5, ep=-1) sage: MF.default_prec(4) sage: MF.dimension() 2 sage: el = MF(MF.f_i()*MF.Delta()) sage: el q - 1/(288*d)*q^2 - 96605/(1327104*d^2)*q^3 + O(q^4) sage: vec = el.coordinate_vector() sage: vec (1, -1/(288*d)) sage: vec.parent() Vector space of dimension 2 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: vec.parent() == MF.module() True sage: el == vec[0]*MF.gen(0) + vec[1]*MF.gen(1) True sage: el == MF.element_from_coordinates(vec) True sage: MF = CuspForms(n=infinity, k=16) sage: el2 = MF(MF.Delta()*MF.E4()) sage: vec2 = el2.coordinate_vector() sage: vec2 (1, 5/(8*d), 187/(1024*d^2)) sage: el2 == MF.element_from_coordinates(vec2) True
- dimension()#
Return the dimension of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: MF = CuspForms(n=12, k=72/5, ep=1) sage: MF.dimension() 3 sage: len(MF.gens()) == MF.dimension() True sage: CuspForms(n=infinity, k=8).dimension() 1
- gens()#
Return a basis of
self
as a list of basis elements.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: MF=CuspForms(n=12, k=72/5, ep=1) sage: MF CuspForms(n=12, k=72/5, ep=1) over Integer Ring sage: MF.dimension() 3 sage: MF.gens() [q + 296888795/(10319560704*d^3)*q^4 + O(q^5), q^2 + 6629/(221184*d^2)*q^4 + O(q^5), q^3 - 25/(96*d)*q^4 + O(q^5)] sage: MF = CuspForms(n=infinity, k=8, ep=1) sage: MF.gen(0) == MF.E4()*MF.f_inf() True
- class sage.modular.modform_hecketriangle.space.MeromorphicModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) meromorphic modular forms for the given group, base ring, weight and multiplier
- class sage.modular.modform_hecketriangle.space.ModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) modular forms for the given group, base ring, weight and multiplier
- coordinate_vector(v)#
Return the coordinate vector of
v
with respect to the basisself.gens()
.INPUT:
v
– An element ofself
.
OUTPUT:
An element of
self.module()
, namely the corresponding coordinate vector ofv
with respect to the basisself.gens()
.The module is the free module over the coefficient ring of
self
with the dimension ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=6, k=20, ep=1) sage: MF.dimension() 4 sage: el = MF.E4()^2*MF.Delta() sage: el q + 78*q^2 + 2781*q^3 + 59812*q^4 + O(q^5) sage: vec = el.coordinate_vector() sage: vec (0, 1, 13/(18*d), 103/(432*d^2)) sage: vec.parent() Vector space of dimension 4 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: vec.parent() == MF.module() True sage: el == vec[0]*MF.gen(0) + vec[1]*MF.gen(1) + vec[2]*MF.gen(2) + vec[3]*MF.gen(3) True sage: el == MF.element_from_coordinates(vec) True sage: MF = ModularForms(n=infinity, k=8, ep=1) sage: (MF.E4()^2).coordinate_vector() (1, 1/(2*d), 15/(128*d^2))
- dimension()#
Return the dimension of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=6, k=20, ep=1) sage: MF.dimension() 4 sage: len(MF.gens()) == MF.dimension() True sage: ModularForms(n=infinity, k=8).dimension() 3
- gens()#
Return a basis of
self
as a list of basis elements.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=6, k=20, ep=1) sage: MF.dimension() 4 sage: MF.gens() [1 + 360360*q^4 + O(q^5), q + 21742*q^4 + O(q^5), q^2 + 702*q^4 + O(q^5), q^3 - 6*q^4 + O(q^5)] sage: ModularForms(n=infinity, k=4).gens() [1 + 240*q^2 + 2160*q^4 + O(q^5), q - 8*q^2 + 28*q^3 - 64*q^4 + O(q^5)]
- class sage.modular.modform_hecketriangle.space.QuasiCuspForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) quasi cusp forms for the given group, base ring, weight and multiplier
- coordinate_vector(v)#
Return the coordinate vector of
v
with respect to the basisself.gens()
.INPUT:
v
– An element ofself
.
OUTPUT:
An element of
self.module()
, namely the corresponding coordinate vector ofv
with respect to the basisself.gens()
.The module is the free module over the coefficient ring of
self
with the dimension ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms sage: MF = QuasiCuspForms(n=6, k=20, ep=1) sage: MF.dimension() 12 sage: el = MF(MF.E4()^2*MF.Delta() + MF.E4()*MF.E2()^2*MF.Delta()) sage: el 2*q + 120*q^2 + 3402*q^3 + 61520*q^4 + O(q^5) sage: vec = el.coordinate_vector() # long time sage: vec # long time (1, 13/(18*d), 103/(432*d^2), 0, 0, 1, 1/(2*d), 0, 0, 0, 0, 0) sage: vec.parent() # long time Vector space of dimension 12 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: vec.parent() == MF.module() # long time True sage: el == MF(sum([vec[l]*MF.gen(l) for l in range(0,12)])) # long time True sage: el == MF.element_from_coordinates(vec) # long time True sage: MF.gen(1).coordinate_vector() == vector([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # long time True sage: MF = QuasiCuspForms(n=infinity, k=10, ep=-1) sage: el2 = MF(MF.E4()*MF.f_inf()*(MF.f_i() - MF.E2())) sage: el2.coordinate_vector() (1, -1) sage: el2 == MF.element_from_coordinates(el2.coordinate_vector()) True
- dimension()#
Return the dimension of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms sage: MF = QuasiCuspForms(n=8, k=46/3, ep=-1) sage: MF.default_prec(3) sage: MF.dimension() 7 sage: len(MF.gens()) == MF.dimension() True sage: QuasiCuspForms(n=infinity, k=10, ep=-1).dimension() 2
- gens()#
Return a basis of
self
as a list of basis elements.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms sage: MF = QuasiCuspForms(n=8, k=46/3, ep=-1) sage: MF.default_prec(4) sage: MF.dimension() 7 sage: MF.gens() [q - 17535/(262144*d^2)*q^3 + O(q^4), q^2 - 47/(128*d)*q^3 + O(q^4), q - 9/(128*d)*q^2 + 15633/(262144*d^2)*q^3 + O(q^4), q^2 - 7/(128*d)*q^3 + O(q^4), q - 23/(64*d)*q^2 - 3103/(262144*d^2)*q^3 + O(q^4), q - 3/(64*d)*q^2 - 4863/(262144*d^2)*q^3 + O(q^4), q - 27/(64*d)*q^2 + 17217/(262144*d^2)*q^3 + O(q^4)] sage: MF = QuasiCuspForms(n=infinity, k=10, ep=-1) sage: MF.gens() [q - 16*q^2 - 156*q^3 - 256*q^4 + O(q^5), q - 60*q^3 - 256*q^4 + O(q^5)]
- class sage.modular.modform_hecketriangle.space.QuasiMeromorphicModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) quasi meromorphic modular forms for the given group, base ring, weight and multiplier
- class sage.modular.modform_hecketriangle.space.QuasiModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) quasi modular forms for the given group, base ring, weight and multiplier
- coordinate_vector(v)#
Return the coordinate vector of
v
with respect to the basisself.gens()
.INPUT:
v
– An element ofself
.
OUTPUT:
An element of
self.module()
, namely the corresponding coordinate vector ofv
with respect to the basisself.gens()
.The module is the free module over the coefficient ring of
self
with the dimension ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: MF = QuasiModularForms(n=6, k=20, ep=1) sage: MF.dimension() 22 sage: el = MF(MF.E4()^2*MF.E6()^2 + MF.E4()*MF.E2()^2*MF.Delta() + MF.E2()^3*MF.E4()^2*MF.E6()) sage: el 2 + 25*q - 2478*q^2 - 82731*q^3 - 448484*q^4 + O(q^5) sage: vec = el.coordinate_vector() # long time sage: vec # long time (1, 1/(9*d), -11/(81*d^2), -4499/(104976*d^3), 0, 0, 0, 0, 1, 1/(2*d), 1, 5/(18*d), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) sage: vec.parent() # long time Vector space of dimension 22 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: vec.parent() == MF.module() # long time True sage: el == MF(sum([vec[l]*MF.gen(l) for l in range(0,22)])) # long time True sage: el == MF.element_from_coordinates(vec) # long time True sage: MF.gen(1).coordinate_vector() == vector([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # long time True sage: MF = QuasiModularForms(n=infinity, k=4, ep=1) sage: el2 = MF.E4() + MF.E2()^2 sage: el2 2 + 160*q^2 + 512*q^3 + 1632*q^4 + O(q^5) sage: el2.coordinate_vector() (1, 1/(4*d), 0, 1) sage: el2 == MF.element_from_coordinates(el2.coordinate_vector()) True
- dimension()#
Return the dimension of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: MF = QuasiModularForms(n=5, k=6, ep=-1) sage: MF.dimension() 3 sage: len(MF.gens()) == MF.dimension() True
- gens()#
Return a basis of
self
as a list of basis elements.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: MF = QuasiModularForms(n=5, k=6, ep=-1) sage: MF.default_prec(2) sage: MF.gens() [1 - 37/(200*d)*q + O(q^2), 1 + 33/(200*d)*q + O(q^2), 1 - 27/(200*d)*q + O(q^2)] sage: MF = QuasiModularForms(n=infinity, k=2, ep=-1) sage: MF.default_prec(2) sage: MF.gens() [1 - 24*q + O(q^2), 1 - 8*q + O(q^2)]
- class sage.modular.modform_hecketriangle.space.QuasiWeakModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) quasi weakly holomorphic modular forms for the given group, base ring, weight and multiplier
- class sage.modular.modform_hecketriangle.space.WeakModularForms(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Module of (Hecke) weakly holomorphic modular forms for the given group, base ring, weight and multiplier
- class sage.modular.modform_hecketriangle.space.ZeroForm(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract
,sage.modules.module.Module
,sage.structure.unique_representation.UniqueRepresentation
Zero Module for the zero form for the given group, base ring weight and multiplier
- coordinate_vector(v)#
Return the coordinate vector of
v
with respect to the basisself.gens()
.Since this is the zero module which only contains the zero form the trivial vector in the trivial module of dimension
0
is returned.INPUT:
v
– An element ofself
, i.e. in this case the zero vector.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ZeroForm sage: MF = ZeroForm(6, QQ, 3, -1) sage: el = MF(0) sage: el O(q^5) sage: vec = el.coordinate_vector() sage: vec () sage: vec.parent() Vector space of dimension 0 over Fraction Field of Univariate Polynomial Ring in d over Rational Field sage: vec.parent() == MF.module() True
- dimension()#
Return the dimension of
self
. Since this is the zero module0
is returned.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ZeroForm sage: ZeroForm(6, CC, 3, -1).dimension() 0
- gens()#
Return a basis of
self
as a list of basis elements. Since this is the zero module an empty list is returned.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ZeroForm sage: ZeroForm(6, CC, 3, -1).gens() []
- sage.modular.modform_hecketriangle.space.canonical_parameters(group, base_ring, k, ep, n=None)#
Return a canonical version of the parameters.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import canonical_parameters sage: canonical_parameters(5, ZZ, 20/3, int(1)) (Hecke triangle group for n = 5, Integer Ring, 20/3, 1, 5) sage: canonical_parameters(infinity, ZZ, 2, int(-1)) (Hecke triangle group for n = +Infinity, Integer Ring, 2, -1, +Infinity)