Hecke triangle groups#
AUTHORS:
Jonas Jermann (2013): initial version
- class sage.modular.modform_hecketriangle.hecke_triangle_groups.HeckeTriangleGroup(n)#
Bases:
sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic
,sage.structure.unique_representation.UniqueRepresentation
Hecke triangle group (2, n, infinity).
- Element#
alias of
sage.modular.modform_hecketriangle.hecke_triangle_group_element.HeckeTriangleGroupElement
- I()#
Return the identity element/matrix for
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(10).I() [1 0] [0 1] sage: HeckeTriangleGroup(10).I().parent() Hecke triangle group for n = 10
- S()#
Return the generator of
self
corresponding to the conformal circle inversion.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).S() [ 0 -1] [ 1 0] sage: HeckeTriangleGroup(10).S() [ 0 -1] [ 1 0] sage: HeckeTriangleGroup(10).S()^2 == -HeckeTriangleGroup(10).I() True sage: HeckeTriangleGroup(10).S()^4 == HeckeTriangleGroup(10).I() True sage: HeckeTriangleGroup(10).S().parent() Hecke triangle group for n = 10
- T(m=1)#
Return the element in
self
corresponding to the translation bym*self.lam()
.INPUT:
m
– An integer, default:1
, namely the second generator ofself
.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).T() [1 1] [0 1] sage: HeckeTriangleGroup(10).T(-4) [ 1 -4*lam] [ 0 1] sage: HeckeTriangleGroup(10).T().parent() Hecke triangle group for n = 10
- U()#
Return an alternative generator of
self
instead ofT
.U
stabilizesrho
and has order2*self.n()
.If
n=infinity
thenU
is parabolic and has infinite order, it then fixes the cusp[-1]
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).U() [ 1 -1] [ 1 0] sage: HeckeTriangleGroup(3).U()^3 == -HeckeTriangleGroup(3).I() True sage: HeckeTriangleGroup(3).U()^6 == HeckeTriangleGroup(3).I() True sage: HeckeTriangleGroup(10).U() [lam -1] [ 1 0] sage: HeckeTriangleGroup(10).U()^10 == -HeckeTriangleGroup(10).I() True sage: HeckeTriangleGroup(10).U()^20 == HeckeTriangleGroup(10).I() True sage: HeckeTriangleGroup(10).U().parent() Hecke triangle group for n = 10
- V(j)#
Return the j’th generator for the usual representatives of conjugacy classes of
self
. It is given byV=U^(j-1)*T
.INPUT:
j
– Any integer. To get the usual representativesj
should range from1
toself.n()-1
.
OUTPUT:
The corresponding matrix/element. The matrix is parabolic if
j
is congruent to +-1 moduloself.n()
. It is elliptic ifj
is congruent to 0 moduloself.n()
. It is hyperbolic otherwise.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(3) sage: G.V(0) == -G.S() True sage: G.V(1) == G.T() True sage: G.V(2) [1 0] [1 1] sage: G.V(3) == G.S() True sage: G = HeckeTriangleGroup(5) sage: G.element_repr_method("default") sage: G.V(1) [ 1 lam] [ 0 1] sage: G.V(2) [lam lam] [ 1 lam] sage: G.V(3) [lam 1] [lam lam] sage: G.V(4) [ 1 0] [lam 1] sage: G.V(5) == G.S() True
- alpha()#
Return the parameter
alpha
ofself
. This is the first parameter of the hypergeometric series used in the calculation of the Hauptmodul ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).alpha() 1/12 sage: HeckeTriangleGroup(4).alpha() 1/8 sage: HeckeTriangleGroup(5).alpha() 3/20 sage: HeckeTriangleGroup(6).alpha() 1/6 sage: HeckeTriangleGroup(10).alpha() 1/5 sage: HeckeTriangleGroup(infinity).alpha() 1/4
- base_field()#
Return the base field of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(n=infinity).base_field() Rational Field sage: HeckeTriangleGroup(n=7).base_field() Number Field in lam with defining polynomial x^3 - x^2 - 2*x + 1 with lam = 1.801937735804839?
- base_ring()#
Return the base ring of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(n=infinity).base_ring() Integer Ring sage: HeckeTriangleGroup(n=7).base_ring() Maximal Order in Number Field in lam with defining polynomial x^3 - x^2 - 2*x + 1 with lam = 1.801937735804839?
- beta()#
Return the parameter
beta
ofself
. This is the second parameter of the hypergeometric series used in the calculation of the Hauptmodul ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).beta() 5/12 sage: HeckeTriangleGroup(4).beta() 3/8 sage: HeckeTriangleGroup(5).beta() 7/20 sage: HeckeTriangleGroup(6).beta() 1/3 sage: HeckeTriangleGroup(10).beta() 3/10 sage: HeckeTriangleGroup(infinity).beta() 1/4
- class_number(D, primitive=True)#
Return the class number of
self
for the discriminantD
.This is the number of conjugacy classes of (primitive) elements of discriminant
D
.Note: Due to the 1-1 correspondence with hyperbolic fixed points resp. hyperbolic binary quadratic forms this also gives the class number in those cases.
INPUT:
D
– An element of the base ring correspondingto a valid discriminant.
primitive
– IfTrue
(default) then only primitiveelements are considered.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: G.class_number(4) 1 sage: G.class_number(4, primitive=False) 1 sage: G.class_number(14) 2 sage: G.class_number(32) 2 sage: G.class_number(32, primitive=False) 3 sage: G.class_number(68) 4
- class_representatives(D, primitive=True)#
Return a representative for each conjugacy class for the discriminant
D
(ignoring the sign).If
primitive=True
only one representative for each fixed point is returned (ignoring sign).INPUT:
D
– An element of the base ring correspondingto a valid discriminant.
primitive
– IfTrue
(default) then only primitiverepresentatives are considered.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: G.element_repr_method("conj") sage: R = G.class_representatives(4) sage: R [[V(2)]] sage: [v.continued_fraction()[1] for v in R] [(2,)] sage: R = G.class_representatives(0) sage: R [[V(3)]] sage: [v.continued_fraction()[1] for v in R] [(1, 2)] sage: R = G.class_representatives(-4) sage: R [[S]] sage: R = G.class_representatives(-4, primitive=False) sage: R [[S], [U^2]] sage: R = G.class_representatives(G.lam()^2 - 4) sage: R [[U]] sage: R = G.class_representatives(G.lam()^2 - 4, primitive=False) sage: R [[U], [U^(-1)]] sage: R = G.class_representatives(14) sage: sorted(R) [[V(2)*V(3)], [V(1)*V(2)]] sage: sorted(v.continued_fraction()[1] for v in R) [(1, 2, 2), (3,)] sage: R = G.class_representatives(32) sage: sorted(R) [[V(3)^2*V(1)], [V(1)^2*V(3)]] sage: [v.continued_fraction()[1] for v in sorted(R)] [(1, 2, 1, 3), (1, 4)] sage: R = G.class_representatives(32, primitive=False) sage: sorted(R) [[V(3)^2*V(1)], [V(1)^2*V(3)], [V(2)^2]] sage: G.element_repr_method("default")
- dvalue()#
Return a symbolic expression (or an exact value in case n=3, 4, 6) for the transfinite diameter (or capacity) of
self
.This is the first nontrivial Fourier coefficient of the Hauptmodul for the Hecke triangle group in case it is normalized to
J_inv(i)=1
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).dvalue() 1/1728 sage: HeckeTriangleGroup(4).dvalue() 1/256 sage: HeckeTriangleGroup(5).dvalue() e^(2*euler_gamma - 4*pi/(sqrt(5) + 1) + psi(17/20) + psi(13/20)) sage: HeckeTriangleGroup(6).dvalue() 1/108 sage: HeckeTriangleGroup(10).dvalue() e^(2*euler_gamma - 4*pi/sqrt(2*sqrt(5) + 10) + psi(4/5) + psi(7/10)) sage: HeckeTriangleGroup(infinity).dvalue() 1/64
- element_repr_method(method=None)#
Either return or set the representation method for elements of
self
.INPUT:
method
– Ifmethod=None
(default) the current default representationmethod is returned. Otherwise the default method is set to
method
. Ifmethod
is not available a ValueError is raised. Possible methods are:default
: Use the usual representation method for matrix group elements.basic
: The representation is given as a word inS
and powers ofT
.conj
: The conjugacy representative of the element is representedas a word in powers of the basic blocks, together with an unspecified conjugation matrix.
block
: Same asconj
but the conjugation matrix is specified as well.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(5) sage: G.element_repr_method() 'default' sage: G.element_repr_method("basic") sage: G.element_repr_method() 'basic'
- get_FD(z)#
Return a tuple (A,w) which determines how to map
z
to the usual (strict) fundamental domain ofself
.INPUT:
z
– a complex number or an element of AlgebraicField().
OUTPUT:
A tuple
(A, w)
.A
– a matrix inself
such thatA.acton(w)==z
(ifz
is exact at least).w
– a complex number or an element of AlgebraicField() (depending on the typez
) which lies inside the (strict) fundamental domain ofself
(self.in_FD(w)==True
) and which is equivalent toz
(by the above property).
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(8) sage: z = AlgebraicField()(1+i/2) sage: (A, w) = G.get_FD(z) sage: A [-lam 1] [ -1 0] sage: A.acton(w) == z True sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: z = (134.12 + 0.22*i).n() sage: (A, w) = G.get_FD(z) sage: A [-73*lam^3 + 74*lam 73*lam^2 - 1] [ -lam^2 + 1 lam] sage: w 0.769070776942... + 0.779859114103...*I sage: z 134.120000000... + 0.220000000000...*I sage: A.acton(w) 134.1200000... + 0.2200000000...*I
- in_FD(z)#
Returns
True
ifz
lies in the (strict) fundamental domain ofself
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(5).in_FD(CC(1.5/2 + 0.9*i)) True sage: HeckeTriangleGroup(4).in_FD(CC(1.5/2 + 0.9*i)) False
- is_arithmetic()#
Return True if
self
is an arithmetic subgroup.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).is_arithmetic() True sage: HeckeTriangleGroup(4).is_arithmetic() True sage: HeckeTriangleGroup(5).is_arithmetic() False sage: HeckeTriangleGroup(6).is_arithmetic() True sage: HeckeTriangleGroup(10).is_arithmetic() False sage: HeckeTriangleGroup(infinity).is_arithmetic() True
- is_discriminant(D, primitive=True)#
Returns whether
D
is a discriminant of an element ofself
.Note: Checking that something isn’t a discriminant takes much longer than checking for valid discriminants.
INPUT:
D
– An element of the base ring.primitive
– IfTrue
(default) then only primitiveelements are considered.
OUTPUT:
True
ifD
is a primitive discriminant (a discriminant of a primitive element) andFalse
otherwise. Ifprimitive=False
then also non-primitive elements are considered.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: G.is_discriminant(68) True sage: G.is_discriminant(196, primitive=False) # long time True sage: G.is_discriminant(2) False
- lam()#
Return the parameter
lambda
ofself
, wherelambda
is twice the real part ofrho
, lying between1
(whenn=3
) and2
(whenn=infinity
).EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).lam() 1 sage: HeckeTriangleGroup(4).lam() lam sage: HeckeTriangleGroup(4).lam()^2 2 sage: HeckeTriangleGroup(6).lam()^2 3 sage: AA(HeckeTriangleGroup(10).lam()) 1.9021130325903...? sage: HeckeTriangleGroup(infinity).lam() 2
- lam_minpoly()#
Return the minimal polynomial of the corresponding lambda parameter of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(10).lam_minpoly() x^4 - 5*x^2 + 5 sage: HeckeTriangleGroup(17).lam_minpoly() x^8 - x^7 - 7*x^6 + 6*x^5 + 15*x^4 - 10*x^3 - 10*x^2 + 4*x + 1 sage: HeckeTriangleGroup(infinity).lam_minpoly() x - 2
- list_discriminants(D, primitive=True, hyperbolic=True, incomplete=False)#
Returns a list of all discriminants up to some upper bound
D
.INPUT:
D
– An element/discriminant of the base ring ormore generally an upper bound for the discriminant.
primitive
– IfTrue
(default) then only primitivediscriminants are listed.
hyperbolic
– IfTrue
(default) then only positivediscriminants are listed.
incomplete
– IfTrue
(default:False
) then all (also higher)discriminants which were gathered so far are listed (however there might be missing discriminants inbetween).
OUTPUT:
A list of discriminants less than or equal to
D
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: G.list_discriminants(D=68) [4, 12, 14, 28, 32, 46, 60, 68] sage: G.list_discriminants(D=0, hyperbolic=False, primitive=False) [-4, -2, 0] sage: G = HeckeTriangleGroup(n=5) sage: G.list_discriminants(D=20) [4*lam, 7*lam + 6, 9*lam + 5] sage: G.list_discriminants(D=0, hyperbolic=False, primitive=False) [-4, -lam - 2, lam - 3, 0]
- n()#
Return the parameter
n
ofself
, wherepi/n
is the angle atrho
of the corresponding basic hyperbolic triangle with verticesi
,rho
andinfinity
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(10).n() 10 sage: HeckeTriangleGroup(infinity).n() +Infinity
- one()#
Return the identity element/matrix for
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(10) sage: G(1) == G.one() True sage: G(1) [1 0] [0 1] sage: G(1).parent() Hecke triangle group for n = 10
- rational_period_functions(k, D)#
Return a list of basic rational period functions of weight
k
for discriminantD
. The list is expected to be a generating set for all rational period functions of the given weight and discriminant (unknown).The method assumes that
D > 0
. Also see the element method \(rational_period_function\) for more information.k
– An even integer, the desired weight of the rational period functions.D
– An element of the base ring correspondingto a valid discriminant.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: sorted(G.rational_period_functions(k=4, D=12)) [(z^4 - 1)/z^4] sage: sorted(G.rational_period_functions(k=-2, D=12)) [-z^2 + 1, 4*lam*z^2 - 4*lam] sage: sorted(G.rational_period_functions(k=2, D=14)) [(24*z^6 - 120*z^4 + 120*z^2 - 24)/(9*z^8 - 80*z^6 + 146*z^4 - 80*z^2 + 9), (24*z^6 - 120*z^4 + 120*z^2 - 24)/(9*z^8 - 80*z^6 + 146*z^4 - 80*z^2 + 9), 1/z, (z^2 - 1)/z^2] sage: sorted(G.rational_period_functions(k=-4, D=14)) [-16*z^4 + 16, -z^4 + 1, 16*z^4 - 16]
- reduced_elements(D)#
Return all reduced (primitive) elements of discriminant
D
. Also see the element methodis_reduced()
for more information.D
– An element of the base ring correspondingto a valid discriminant.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: R = G.reduced_elements(D=12) sage: R [ [ 5 -lam] [ 5 -3*lam] [3*lam -1], [ lam -1] ] sage: [v.continued_fraction() for v in R] [((), (1, 3)), ((), (3, 1))] sage: R = G.reduced_elements(D=14) sage: sorted(R) [ [3*lam -1] [4*lam -3] [ 5*lam -7] [ 5*lam -3] [ 1 0], [ 3 -lam], [ 3 -2*lam], [ 7 -2*lam] ] sage: sorted(v.continued_fraction() for v in R) [((), (1, 2, 2)), ((), (2, 1, 2)), ((), (2, 2, 1)), ((), (3,))]
- rho()#
Return the vertex
rho
of the basic hyperbolic triangle which describesself
.rho
has absolute value 1 and anglepi/n
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: HeckeTriangleGroup(3).rho() == QQbar(1/2 + sqrt(3)/2*i) True sage: HeckeTriangleGroup(4).rho() == QQbar(sqrt(2)/2*(1 + i)) True sage: HeckeTriangleGroup(6).rho() == QQbar(sqrt(3)/2 + 1/2*i) True sage: HeckeTriangleGroup(10).rho() 0.95105651629515...? + 0.30901699437494...?*I sage: HeckeTriangleGroup(infinity).rho() 1
- root_extension_embedding(D, K=None)#
Return the correct embedding from the root extension field of the given discriminant
D
to the fieldK
.Also see the method
root_extension_embedding(K)
ofHeckeTriangleGroupElement
for more examples.INPUT:
D
– An element of the base ring ofself
corresponding to a discriminant.
K
– A field to which we want the (correct) embedding.If
K=None
(default) thenAlgebraicField()
is used for positiveD
andAlgebraicRealField()
otherwise.
OUTPUT:
The corresponding embedding if it was found. Otherwise a ValueError is raised.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=infinity) sage: G.root_extension_embedding(32) Ring morphism: From: Number Field in e with defining polynomial x^2 - 32 To: Algebraic Real Field Defn: e |--> 5.656854249492...? sage: G.root_extension_embedding(-4) Ring morphism: From: Number Field in e with defining polynomial x^2 + 4 To: Algebraic Field Defn: e |--> 2*I sage: G.root_extension_embedding(4) Coercion map: From: Rational Field To: Algebraic Real Field sage: G = HeckeTriangleGroup(n=7) sage: lam = G.lam() sage: D = 4*lam^2 + 4*lam - 4 sage: G.root_extension_embedding(D, CC) Relative number field morphism: From: Number Field in e with defining polynomial x^2 - 4*lam^2 - 4*lam + 4 over its base field To: Complex Field with 53 bits of precision Defn: e |--> 4.02438434522... lam |--> 1.80193773580... sage: D = lam^2 - 4 sage: G.root_extension_embedding(D) Relative number field morphism: From: Number Field in e with defining polynomial x^2 - lam^2 + 4 over its base field To: Algebraic Field Defn: e |--> 0.?... + 0.867767478235...?*I lam |--> 1.801937735804...?
- root_extension_field(D)#
Return the quadratic extension field of the base field by the square root of the given discriminant
D
.INPUT:
D
– An element of the base ring ofself
corresponding to a discriminant.
OUTPUT:
A relative (at most quadratic) extension to the base field of self in the variable
e
which corresponds tosqrt(D)
. If the extension degree is1
then the base field is returned.The correct embedding is the positive resp. positive imaginary one. Unfortunately no default embedding can be specified for relative number fields yet.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=infinity) sage: G.root_extension_field(32) Number Field in e with defining polynomial x^2 - 32 sage: G.root_extension_field(-4) Number Field in e with defining polynomial x^2 + 4 sage: G.root_extension_field(4) == G.base_field() True sage: G = HeckeTriangleGroup(n=7) sage: lam = G.lam() sage: D = 4*lam^2 + 4*lam - 4 sage: G.root_extension_field(D) Number Field in e with defining polynomial x^2 - 4*lam^2 - 4*lam + 4 over its base field sage: G.root_extension_field(4) == G.base_field() True sage: D = lam^2 - 4 sage: G.root_extension_field(D) Number Field in e with defining polynomial x^2 - lam^2 + 4 over its base field
- simple_elements(D)#
Return all simple elements of discriminant
D
. Also see the element methodis_simple()
for more information.D
– An element of the base ring correspondingto a valid discriminant.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: G = HeckeTriangleGroup(n=4) sage: sorted(G.simple_elements(D=12)) [ [ 1 lam] [ 3 lam] [lam 3], [lam 1] ] sage: sorted(G.simple_elements(D=14)) [ [ lam 1] [ lam 3] [2*lam 1] [2*lam 3] [ 3 2*lam], [ 1 2*lam], [ 3 lam], [ 1 lam] ]