Ring \(\ZZ/n\ZZ\) of integers modulo \(n\)#
EXAMPLES:
sage: R = Integers(97)
sage: a = R(5)
sage: a**100000000000000000000000000000000000000000000000000000000000000
61
This example illustrates the relation between \(\ZZ/p\ZZ\) and \(\GF{p}\). In particular, there is a canonical map to \(\GF{p}\), but not in the other direction.
sage: r = Integers(7)
sage: s = GF(7)
sage: r.has_coerce_map_from(s)
False
sage: s.has_coerce_map_from(r)
True
sage: s(1) + r(1)
2
sage: parent(s(1) + r(1))
Finite Field of size 7
sage: parent(r(1) + s(1))
Finite Field of size 7
We list the elements of \(\ZZ/3\ZZ\):
sage: R = Integers(3)
sage: list(R)
[0, 1, 2]
AUTHORS:
William Stein (initial code)
David Joyner (2005-12-22): most examples
Robert Bradshaw (2006-08-24): convert to SageX (Cython)
William Stein (2007-04-29): square_roots_of_one
Simon King (2011-04-21): allow to prescribe a category
Simon King (2013-09): Only allow to prescribe the category of fields
- class sage.rings.finite_rings.integer_mod_ring.IntegerModFactory#
Bases:
sage.structure.factory.UniqueFactory
Return the quotient ring \(\ZZ / n\ZZ\).
INPUT:
order
– integer (default: 0); positive or negativeis_field
– bool (default:False
); assert that the order is prime and hence the quotient ring belongs to the category of fieldscategory
(optional) - the category that the quotient ring belongs to.
Note
The optional argument
is_field
is not part of the cache key. Hence, this factory will create precisely one instance of \(\ZZ / n\ZZ\). However, ifis_field
is true, then a previously created instance of the quotient ring will be updated to be in the category of fields.Use with care! Erroneously putting \(\ZZ / n\ZZ\) into the category of fields may have consequences that can compromise a whole Sage session, so that a restart will be needed.
EXAMPLES:
sage: IntegerModRing(15) Ring of integers modulo 15 sage: IntegerModRing(7) Ring of integers modulo 7 sage: IntegerModRing(-100) Ring of integers modulo 100
Note that you can also use
Integers
, which is a synonym forIntegerModRing
.sage: Integers(18) Ring of integers modulo 18 sage: Integers() is Integers(0) is ZZ True
Note
Testing whether a quotient ring \(\ZZ / n\ZZ\) is a field can of course be very costly. By default, it is not tested whether \(n\) is prime or not, in contrast to
GF()
. If the user is sure that the modulus is prime and wants to avoid a primality test, (s)he can providecategory=Fields()
when constructing the quotient ring, and then the result will behave like a field. If the category is not provided during initialisation, and it is found out later that the ring is in fact a field, then the category will be changed at runtime, having the same effect as providingFields()
during initialisation.EXAMPLES:
sage: R = IntegerModRing(5) sage: R.category() Join of Category of finite commutative rings and Category of subquotients of monoids and Category of quotients of semigroups and Category of finite enumerated sets sage: R in Fields() True sage: R.category() Join of Category of finite enumerated fields and Category of subquotients of monoids and Category of quotients of semigroups sage: S = IntegerModRing(5, is_field=True) sage: S is R True
Warning
If the optional argument
is_field
was used by mistake, there is currently no way to revert its impact, even thoughIntegerModRing_generic.is_field()
with the optional argumentproof=True
would return the correct answer. So, prescribeis_field=True
only if you know what your are doing!EXAMPLES:
sage: R = IntegerModRing(33, is_field=True) sage: R in Fields() True sage: R.is_field() True
If the optional argument \(proof=True\) is provided, primality is tested and the mistaken category assignment is reported:
sage: R.is_field(proof=True) Traceback (most recent call last): ... ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED! The order 33 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed. In the latter case, please inform the developers.
However, the mistaken assignment is not automatically corrected:
sage: R in Fields() True
To avoid side-effects of this test on other tests, we clear the cache of the ring factory:
sage: IntegerModRing._cache.clear()
- create_key_and_extra_args(order=0, is_field=False, category=None)#
An integer mod ring is specified uniquely by its order.
EXAMPLES:
sage: Zmod.create_key_and_extra_args(7) (7, {}) sage: Zmod.create_key_and_extra_args(7, True) (7, {'category': Category of fields})
- create_object(version, order, **kwds)#
EXAMPLES:
sage: R = Integers(10) sage: TestSuite(R).run() # indirect doctest
- get_object(version, key, extra_args)#
- class sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic(order, cache=None, category=None)#
Bases:
sage.rings.quotient_ring.QuotientRing_generic
,sage.rings.abc.IntegerModRing
The ring of integers modulo \(N\).
INPUT:
order
– an integercategory
– a subcategory ofCommutativeRings()
(the default)
OUTPUT:
The ring of integers modulo \(N\).
EXAMPLES:
First we compute with integers modulo \(29\).
sage: FF = IntegerModRing(29) sage: FF Ring of integers modulo 29 sage: FF.category() Join of Category of finite commutative rings and Category of subquotients of monoids and Category of quotients of semigroups and Category of finite enumerated sets sage: FF.is_field() True sage: FF.characteristic() 29 sage: FF.order() 29 sage: gens = FF.unit_gens() sage: a = gens[0] sage: a 2 sage: a.is_square() False sage: def pow(i): return a**i sage: [pow(i) for i in range(16)] [1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27] sage: TestSuite(FF).run()
We have seen above that an integer mod ring is, by default, not initialised as an object in the category of fields. However, one can force it to be. Moreover, testing containment in the category of fields my re-initialise the category of the integer mod ring:
sage: F19 = IntegerModRing(19, is_field=True) sage: F19.category().is_subcategory(Fields()) True sage: F23 = IntegerModRing(23) sage: F23.category().is_subcategory(Fields()) False sage: F23 in Fields() True sage: F23.category().is_subcategory(Fields()) True sage: TestSuite(F19).run() sage: TestSuite(F23).run()
By trac ticket #15229, there is a unique instance of the integral quotient ring of a given order. Using the
IntegerModRing()
factory twice, and usingis_field=True
the second time, will update the category of the unique instance:sage: F31a = IntegerModRing(31) sage: F31a.category().is_subcategory(Fields()) False sage: F31b = IntegerModRing(31, is_field=True) sage: F31a is F31b True sage: F31a.category().is_subcategory(Fields()) True
Next we compute with the integers modulo \(16\).
sage: Z16 = IntegerModRing(16) sage: Z16.category() Join of Category of finite commutative rings and Category of subquotients of monoids and Category of quotients of semigroups and Category of finite enumerated sets sage: Z16.is_field() False sage: Z16.order() 16 sage: Z16.characteristic() 16 sage: gens = Z16.unit_gens() sage: gens (15, 5) sage: a = gens[0] sage: b = gens[1] sage: def powa(i): return a**i sage: def powb(i): return b**i sage: gp_exp = FF.unit_group_exponent() sage: gp_exp 28 sage: [powa(i) for i in range(15)] [1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1] sage: [powb(i) for i in range(15)] [1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9] sage: a.multiplicative_order() 2 sage: b.multiplicative_order() 4 sage: TestSuite(Z16).run()
Saving and loading:
sage: R = Integers(100000) sage: TestSuite(R).run() # long time (17s on sage.math, 2011)
Testing ideals and quotients:
sage: Z10 = Integers(10) sage: I = Z10.principal_ideal(0) sage: Z10.quotient(I) == Z10 True sage: I = Z10.principal_ideal(2) sage: Z10.quotient(I) == Z10 False sage: I.is_prime() True
sage: R = IntegerModRing(97) sage: a = R(5) sage: a**(10^62) 61
- cardinality()#
Return the cardinality of this ring.
EXAMPLES:
sage: Zmod(87).cardinality() 87
- characteristic()#
EXAMPLES:
sage: R = IntegerModRing(18) sage: FF = IntegerModRing(17) sage: FF.characteristic() 17 sage: R.characteristic() 18
- degree()#
Return 1.
EXAMPLES:
sage: R = Integers(12345678900) sage: R.degree() 1
- extension(poly, name=None, names=None, **kwds)#
Return an algebraic extension of
self
. Seesage.rings.ring.CommutativeRing.extension()
for more information.EXAMPLES:
sage: R.<t> = QQ[] sage: Integers(8).extension(t^2 - 3) Univariate Quotient Polynomial Ring in t over Ring of integers modulo 8 with modulus t^2 + 5
- factored_order()#
EXAMPLES:
sage: R = IntegerModRing(18) sage: FF = IntegerModRing(17) sage: R.factored_order() 2 * 3^2 sage: FF.factored_order() 17
- factored_unit_order()#
Return a list of
Factorization
objects, each the factorization of the order of the units in a \(\ZZ / p^n \ZZ\) component of this group (using the Chinese Remainder Theorem).EXAMPLES:
sage: R = Integers(8*9*25*17*29) sage: R.factored_unit_order() [2^2, 2 * 3, 2^2 * 5, 2^4, 2^2 * 7]
- field()#
If this ring is a field, return the corresponding field as a finite field, which may have extra functionality and structure. Otherwise, raise a
ValueError
.EXAMPLES:
sage: R = Integers(7); R Ring of integers modulo 7 sage: R.field() Finite Field of size 7 sage: R = Integers(9) sage: R.field() Traceback (most recent call last): ... ValueError: self must be a field
- is_field(proof=None)#
Return True precisely if the order is prime.
INPUT:
proof
(optional bool or None, default None): IfFalse
, then test whether the category of the quotient is a subcategory ofFields()
, or do a probabilistic primality test. IfNone
, then test the category and then do a primality test according to the global arithmetic proof settings. If True, do a deterministic primality test.
If it is found (perhaps probabilistically) that the ring is a field, then the category of the ring is refined to include the category of fields. This may change the Python class of the ring!
EXAMPLES:
sage: R = IntegerModRing(18) sage: R.is_field() False sage: FF = IntegerModRing(17) sage: FF.is_field() True
By trac ticket #15229, the category of the ring is refined, if it is found that the ring is in fact a field:
sage: R = IntegerModRing(127) sage: R.category() Join of Category of finite commutative rings and Category of subquotients of monoids and Category of quotients of semigroups and Category of finite enumerated sets sage: R.is_field() True sage: R.category() Join of Category of finite enumerated fields and Category of subquotients of monoids and Category of quotients of semigroups
It is possible to mistakenly put \(\ZZ/n\ZZ\) into the category of fields. In this case,
is_field()
will return True without performing a primality check. However, if the optional argument \(proof=True\) is provided, primality is tested and the mistake is uncovered in a warning message:sage: R = IntegerModRing(21, is_field=True) sage: R.is_field() True sage: R.is_field(proof=True) Traceback (most recent call last): ... ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED! The order 21 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed. In the latter case, please inform the developers.
To avoid side-effects of this test on other tests, we clear the cache of the ring factory:
sage: IntegerModRing._cache.clear()
- is_integral_domain(proof=None)#
Return
True
if and only if the order ofself
is prime.EXAMPLES:
sage: Integers(389).is_integral_domain() True sage: Integers(389^2).is_integral_domain() False
- is_noetherian()#
Check if
self
is a Noetherian ring.EXAMPLES:
sage: Integers(8).is_noetherian() True
- is_prime_field()#
Return
True
if the order is prime.EXAMPLES:
sage: Zmod(7).is_prime_field() True sage: Zmod(8).is_prime_field() False
- is_unique_factorization_domain(proof=None)#
Return
True
if and only if the order ofself
is prime.EXAMPLES:
sage: Integers(389).is_unique_factorization_domain() True sage: Integers(389^2).is_unique_factorization_domain() False
- krull_dimension()#
Return the Krull dimension of
self
.EXAMPLES:
sage: Integers(18).krull_dimension() 0
- list_of_elements_of_multiplicative_group()#
Return a list of all invertible elements, as python ints.
EXAMPLES:
sage: R = Zmod(12) sage: L = R.list_of_elements_of_multiplicative_group(); L [1, 5, 7, 11] sage: type(L[0]) <... 'int'> sage: Zmod(1).list_of_elements_of_multiplicative_group() [0]
- modulus()#
Return the polynomial \(x - 1\) over this ring.
Note
This function exists for consistency with the finite-field modulus function.
EXAMPLES:
sage: R = IntegerModRing(18) sage: R.modulus() x + 17 sage: R = IntegerModRing(17) sage: R.modulus() x + 16
- multiplicative_generator()#
Return a generator for the multiplicative group of this ring, assuming the multiplicative group is cyclic.
Use the unit_gens function to obtain generators even in the non-cyclic case.
EXAMPLES:
sage: R = Integers(7); R Ring of integers modulo 7 sage: R.multiplicative_generator() 3 sage: R = Integers(9) sage: R.multiplicative_generator() 2 sage: Integers(8).multiplicative_generator() Traceback (most recent call last): ... ValueError: multiplicative group of this ring is not cyclic sage: Integers(4).multiplicative_generator() 3 sage: Integers(25*3).multiplicative_generator() Traceback (most recent call last): ... ValueError: multiplicative group of this ring is not cyclic sage: Integers(25*3).unit_gens() (26, 52) sage: Integers(162).unit_gens() (83,)
- multiplicative_group_is_cyclic()#
Return
True
if the multiplicative group of this field is cyclic. This is the case exactly when the order is less than 8, a power of an odd prime, or twice a power of an odd prime.EXAMPLES:
sage: R = Integers(7); R Ring of integers modulo 7 sage: R.multiplicative_group_is_cyclic() True sage: R = Integers(9) sage: R.multiplicative_group_is_cyclic() True sage: Integers(8).multiplicative_group_is_cyclic() False sage: Integers(4).multiplicative_group_is_cyclic() True sage: Integers(25*3).multiplicative_group_is_cyclic() False
We test that trac ticket #5250 is fixed:
sage: Integers(162).multiplicative_group_is_cyclic() True
- multiplicative_subgroups()#
Return generators for each subgroup of \((\ZZ/N\ZZ)^*\).
EXAMPLES:
sage: Integers(5).multiplicative_subgroups() ((2,), (4,), ()) sage: Integers(15).multiplicative_subgroups() ((11, 7), (11, 4), (2,), (11,), (14,), (7,), (4,), ()) sage: Integers(2).multiplicative_subgroups() ((),) sage: len(Integers(341).multiplicative_subgroups()) 80
- order()#
Return the order of this ring.
EXAMPLES:
sage: Zmod(87).order() 87
- quadratic_nonresidue()#
Return a quadratic non-residue in
self
.EXAMPLES:
sage: R = Integers(17) sage: R.quadratic_nonresidue() 3 sage: R(3).is_square() False
- random_element(bound=None)#
Return a random element of this ring.
INPUT:
bound
, a positive integer orNone
(the default). Is given, return the coercion of an integer in the interval[-bound, bound]
into this ring.
EXAMPLES:
sage: R = IntegerModRing(18) sage: R.random_element().parent() is R True sage: found = [False]*18 sage: while not all(found): ....: found[R.random_element()] = True
We test
bound
-option:sage: R.random_element(2) in [R(16), R(17), R(0), R(1), R(2)] True
- square_roots_of_one()#
Return all square roots of 1 in self, i.e., all solutions to \(x^2 - 1 = 0\).
OUTPUT:
The square roots of 1 in
self
as a tuple.EXAMPLES:
sage: R = Integers(2^10) sage: [x for x in R if x^2 == 1] [1, 511, 513, 1023] sage: R.square_roots_of_one() (1, 511, 513, 1023)
sage: v = Integers(9*5).square_roots_of_one(); v (1, 19, 26, 44) sage: [x^2 for x in v] [1, 1, 1, 1] sage: v = Integers(9*5*8).square_roots_of_one(); v (1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359) sage: [x^2 for x in v] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- unit_gens(**kwds)#
Returns generators for the unit group \((\ZZ/N\ZZ)^*\).
We compute the list of generators using a deterministic algorithm, so the generators list will always be the same. For each odd prime divisor of \(N\) there will be exactly one corresponding generator; if \(N\) is even there will be 0, 1 or 2 generators according to whether 2 divides \(N\) to order 1, 2 or \(\geq 3\).
OUTPUT:
A tuple containing the units of
self
.EXAMPLES:
sage: R = IntegerModRing(18) sage: R.unit_gens() (11,) sage: R = IntegerModRing(17) sage: R.unit_gens() (3,) sage: IntegerModRing(next_prime(10^30)).unit_gens() (5,)
The choice of generators is affected by the optional keyword
algorithm
; this can be'sage'
(default) or'pari'
. Seeunit_group()
for details.sage: A = Zmod(55) sage: A.unit_gens(algorithm='sage') (12, 46) sage: A.unit_gens(algorithm='pari') (2, 21)
- unit_group(algorithm='sage')#
Return the unit group of
self
.INPUT:
self
– the ring \(\ZZ/n\ZZ\) for a positive integer \(n\)algorithm
– either'sage'
(default) or'pari'
OUTPUT:
The unit group of
self
. This is a finite Abelian group equipped with a distinguished set of generators, which is computed using a deterministic algorithm depending on thealgorithm
parameter.If
algorithm == 'sage'
, the generators correspond to the prime factors \(p \mid n\) (one generator for each odd \(p\); the number of generators for \(p = 2\) is 0, 1 or 2 depending on the order to which 2 divides \(n\)).If
algorithm == 'pari'
, the generators are chosen such that their orders form a decreasing sequence with respect to divisibility.
EXAMPLES:
The output of the algorithms
'sage'
and'pari'
can differ in various ways. In the following example, the same cyclic factors are computed, but in a different order:sage: A = Zmod(15) sage: G = A.unit_group(); G Multiplicative Abelian group isomorphic to C2 x C4 sage: G.gens_values() (11, 7) sage: H = A.unit_group(algorithm='pari'); H Multiplicative Abelian group isomorphic to C4 x C2 sage: H.gens_values() (7, 11)
Here are two examples where the cyclic factors are isomorphic, but are ordered differently and have different generators:
sage: A = Zmod(40) sage: G = A.unit_group(); G Multiplicative Abelian group isomorphic to C2 x C2 x C4 sage: G.gens_values() (31, 21, 17) sage: H = A.unit_group(algorithm='pari'); H Multiplicative Abelian group isomorphic to C4 x C2 x C2 sage: H.gens_values() (17, 31, 21) sage: A = Zmod(192) sage: G = A.unit_group(); G Multiplicative Abelian group isomorphic to C2 x C16 x C2 sage: G.gens_values() (127, 133, 65) sage: H = A.unit_group(algorithm='pari'); H Multiplicative Abelian group isomorphic to C16 x C2 x C2 sage: H.gens_values() (133, 127, 65)
In the following examples, the cyclic factors are not even isomorphic:
sage: A = Zmod(319) sage: A.unit_group() Multiplicative Abelian group isomorphic to C10 x C28 sage: A.unit_group(algorithm='pari') Multiplicative Abelian group isomorphic to C140 x C2 sage: A = Zmod(30.factorial()) sage: A.unit_group() Multiplicative Abelian group isomorphic to C2 x C16777216 x C3188646 x C62500 x C2058 x C110 x C156 x C16 x C18 x C22 x C28 sage: A.unit_group(algorithm='pari') Multiplicative Abelian group isomorphic to C20499647385305088000000 x C55440 x C12 x C12 x C4 x C2 x C2 x C2 x C2 x C2 x C2
- unit_group_exponent()#
EXAMPLES:
sage: R = IntegerModRing(17) sage: R.unit_group_exponent() 16 sage: R = IntegerModRing(18) sage: R.unit_group_exponent() 6
- unit_group_order()#
Return the order of the unit group of this residue class ring.
EXAMPLES:
sage: R = Integers(500) sage: R.unit_group_order() 200
- sage.rings.finite_rings.integer_mod_ring.crt(v)#
INPUT:
v
– (list) a lift of elements ofrings.IntegerMod(n)
, for various coprime modulin
EXAMPLES:
sage: from sage.rings.finite_rings.integer_mod_ring import crt sage: crt([mod(3, 8),mod(1,19),mod(7, 15)]) 1027
- sage.rings.finite_rings.integer_mod_ring.is_IntegerModRing(x)#
Return
True
ifx
is an integer modulo ring.This function is deprecated. Use
isinstance()
withsage.rings.abc.IntegerModRing
instead.EXAMPLES:
sage: from sage.rings.finite_rings.integer_mod_ring import is_IntegerModRing sage: R = IntegerModRing(17) sage: is_IntegerModRing(R) doctest:warning... DeprecationWarning: the function is_IntegerModRing is deprecated. Use isinstance(..., sage.rings.abc.IntegerModRing) instead. See https://trac.sagemath.org/32606 for details. True sage: is_IntegerModRing(GF(13)) True sage: is_IntegerModRing(GF(4, 'a')) False sage: is_IntegerModRing(10) False sage: is_IntegerModRing(ZZ) False