Index notation for tensors#
AUTHORS:
Eric Gourgoulhon, Michal Bejger (2014-2015): initial version
Léo Brunswic (2019): add multiple symmetries and multiple contractions
- class sage.tensor.modules.tensor_with_indices.TensorWithIndices(tensor, indices)#
Bases:
sage.structure.sage_object.SageObject
Index notation for tensors.
This is a technical class to allow one to write some tensor operations (contractions and symmetrizations) in index notation.
INPUT:
tensor
– a tensor (or a tensor field)indices
– string containing the indices, as single letters; the contravariant indices must be stated first and separated from the covariant indices by the character_
EXAMPLES:
Index representation of tensors on a rank-3 free module:
sage: M = FiniteRankFreeModule(QQ, 3, name='M') sage: e = M.basis('e') sage: a = M.tensor((2,0), name='a') sage: a[:] = [[1,2,3], [4,5,6], [7,8,9]] sage: b = M.tensor((0,2), name='b') sage: b[:] = [[-1,2,-3], [-4,5,6], [7,-8,9]] sage: t = a*b ; t.set_name('t') ; t Type-(2,2) tensor t on the 3-dimensional vector space M over the Rational Field sage: from sage.tensor.modules.tensor_with_indices import TensorWithIndices sage: T = TensorWithIndices(t, '^ij_kl') ; T t^ij_kl
The
TensorWithIndices
object is returned by the square bracket operator acting on the tensor and fed with the string specifying the indices:sage: a['^ij'] a^ij sage: type(a['^ij']) <class 'sage.tensor.modules.tensor_with_indices.TensorWithIndices'> sage: b['_ef'] b_ef sage: t['^ij_kl'] t^ij_kl
The symbol ‘^’ may be omitted, since the distinction between covariant and contravariant indices is performed by the index position relative to the symbol ‘_’:
sage: t['ij_kl'] t^ij_kl
Also, LaTeX notation may be used:
sage: t['^{ij}_{kl}'] t^ij_kl
If some operation is asked in the index notation, the resulting tensor is returned, not a
TensorWithIndices
object; for instance, for a symmetrization:sage: s = t['^(ij)_kl'] ; s # the symmetrization on i,j is indicated by parentheses Type-(2,2) tensor on the 3-dimensional vector space M over the Rational Field sage: s.symmetries() symmetry: (0, 1); no antisymmetry sage: s == t.symmetrize(0,1) True
The letters denoting the indices can be chosen freely; since they carry no information, they can even be replaced by dots:
sage: t['^(..)_..'] == t.symmetrize(0,1) True
Similarly, for an antisymmetrization:
sage: s = t['^ij_[kl]'] ; s # the symmetrization on k,l is indicated by square brackets Type-(2,2) tensor on the 3-dimensional vector space M over the Rational Field sage: s.symmetries() no symmetry; antisymmetry: (2, 3) sage: s == t.antisymmetrize(2,3) True
One can also perform multiple symmetrization-antisymmetrizations:
sage: aa = a*a sage: aa['(..)(..)'] == aa.symmetrize(0,1).symmetrize(2,3) True sage: aa == aa['(..)(..)'] + aa['[..][..]'] + aa['(..)[..]'] + aa['[..](..)'] True
Another example of an operation indicated by indices is a contraction:
sage: s = t['^ki_kj'] ; s # contraction on the repeated index k Type-(1,1) tensor on the 3-dimensional vector space M over the Rational Field sage: s == t.trace(0,2) True
Indices not involved in the contraction may be replaced by dots:
sage: s == t['^k._k.'] True
The contraction of two tensors is indicated by repeated indices and the
*
operator:sage: s = a['^ik'] * b['_kj'] ; s Type-(1,1) tensor on the 3-dimensional vector space M over the Rational Field sage: s == a.contract(1, b, 0) True sage: s = t['^.k_..'] * b['_.k'] ; s Type-(1,3) tensor on the 3-dimensional vector space M over the Rational Field sage: s == t.contract(1, b, 1) True sage: t['^{ik}_{jl}']*b['_{mk}'] == s # LaTeX notation True
Contraction on two indices:
sage: s = a['^kl'] * b['_kl'] ; s 105 sage: s == (a*b)['^kl_kl'] True sage: s == (a*b)['_kl^kl'] True sage: s == a.contract(0,1, b, 0,1) True
The square bracket operator acts in a similar way on
TensorWithIndices
:sage: b = +a["ij"] ; b._tensor.set_name("b") # create a copy of a["ij"] sage: b b^ij sage: b[:] [1 2 3] [4 5 6] [7 8 9] sage: b[0,0] == 1 True sage: b["ji"] b^ji sage: b["(ij)"][:] [1 3 5] [3 5 7] [5 7 9] sage: b["(ij)"] == b["(ij)"]["ij"] True
However, it keeps track of indices:
sage: b["ij"] = a["ji"] sage: b[:] == a[:] False sage: b[:] == a[:].transpose() True
Arithmetics:
sage: 2*a['^ij'] X^ij sage: (2*a['^ij'])._tensor == 2*a True sage: 2*t['ij_kl'] X^ij_kl sage: +a['^ij'] +a^ij sage: +t['ij_kl'] +t^ij_kl sage: -a['^ij'] -a^ij sage: -t['ij_kl'] -t^ij_kl sage: a["^(..)"]["ij"] == 1/2*(a["^ij"] + a["^ji"]) True
The output indices are the ones of the left term of the addition:
sage: a["^(..)"]["ji"] == 1/2*(a["^ij"] + a["^ji"]) False sage: (a*a)["^..(ij)"]["abij"] == 1/2*((a*a)["^abij"] + (a*a)["^abji"]) True sage: c = 1/2*((a*a)["^abij"] + (a*a)["^ijab"]) sage: from itertools import product sage: all(c[i,j,k,l] == c[k,l,i,j] for i,j,k,l in product(range(3),repeat=4)) True
Non-digit unicode identifier characters are allowed:
sage: a['^μξ'] a^μξ
Conventions are checked and non acceptable indices raise
ValueError
, for instance:sage: a['([..])'] # nested symmetries Traceback (most recent call last): ... ValueError: index conventions not satisfied sage: a['(..'] # unbalanced parenthis Traceback (most recent call last): ... ValueError: index conventions not satisfied sage: a['ii'] # repeated indices of the same type Traceback (most recent call last): ... ValueError: index conventions not satisfied: repeated indices of same type sage: (a*a)['^(ij)^(kl)'] # multiple indices group of the same type Traceback (most recent call last): ... ValueError: index conventions not satisfied sage: a["^\u2663\u2665"] # non-word-constituent Traceback (most recent call last): ... ValueError: index conventions not satisfied
- permute_indices(permutation)#
Return a tensor with indices with permuted indices.
INPUT:
permutation
– permutation that has to be applied to the indices the input should be alist
containing the second line of the permutation in Cauchy notation.
OUTPUT:
an instance of
TensorWithIndices
whose indices names and place are those ofself
but whose components have been permuted withpermutation
.
EXAMPLES:
sage: M = FiniteRankFreeModule(QQ, 3, name='M') sage: e = M.basis('e') sage: a = M.tensor((2,0), name='a') sage: a[:] = [[1,2,3], [4,5,6], [7,8,9]] sage: b = M.tensor((2,0), name='b') sage: b[:] = [[-1,2,-3], [-4,5,6], [7,-8,9]] sage: identity = [0,1] sage: transposition = [1,0] sage: a["ij"].permute_indices(identity) == a["ij"] True sage: a["ij"].permute_indices(transposition)[:] == a[:].transpose() True sage: cycle = [1,2,3,0] # the cyclic permutation sending 0 to 1 sage: (a*b)[0,1,2,0] == (a*b)["ijkl"].permute_indices(cycle)[1,2,0,0] True
- update()#
Return the tensor contains in
self
if it differs from that used for creatingself
, otherwise returnself
.EXAMPLES:
sage: from sage.tensor.modules.tensor_with_indices import TensorWithIndices sage: M = FiniteRankFreeModule(QQ, 3, name='M') sage: e = M.basis('e') sage: a = M.tensor((1,1), name='a') sage: a[:] = [[1,-2,3], [-4,5,-6], [7,-8,9]] sage: a_ind = TensorWithIndices(a, 'i_j') ; a_ind a^i_j sage: a_ind.update() a^i_j sage: a_ind.update() is a_ind True sage: a_ind = TensorWithIndices(a, 'k_k') ; a_ind scalar sage: a_ind.update() 15