Lazy real and complex numbers#
These classes are very lazy, in the sense that it doesn’t really do anything but simply sits between exact rings of characteristic 0 and the real numbers. The values are actually computed when they are cast into a field of fixed precision.
The main purpose of these classes is to provide a place for exact rings (e.g. number fields) to embed for the coercion model (as only one embedding can be specified in the forward direction).
- sage.rings.real_lazy.ComplexLazyField()#
Returns the lazy complex field.
EXAMPLES:
There is only one lazy complex field:
sage: ComplexLazyField() is ComplexLazyField() True
- class sage.rings.real_lazy.ComplexLazyField_class#
Bases:
sage.rings.real_lazy.LazyField
This class represents the set of complex numbers to unspecified precision. For the most part it simply wraps exact elements and defers evaluation until a specified precision is requested.
For more information, see the documentation of the
RLF
.EXAMPLES:
sage: a = CLF(-1).sqrt() sage: a 1*I sage: CDF(a) 1.0*I sage: ComplexField(200)(a) 1.0000000000000000000000000000000000000000000000000000000000*I
- construction()#
Returns the functorial construction of
self
, namely, algebraic closure of the real lazy field.EXAMPLES:
sage: c, S = CLF.construction(); S Real Lazy Field sage: CLF == c(S) True
- gen(i=0)#
Return the \(i\)-th generator of
self
.EXAMPLES:
sage: CLF.gen() 1*I sage: ComplexField(100)(CLF.gen()) 1.0000000000000000000000000000*I
- interval_field(prec=None)#
Returns the interval field that represents the same mathematical field as
self
.EXAMPLES:
sage: CLF.interval_field() Complex Interval Field with 53 bits of precision sage: CLF.interval_field(333) Complex Interval Field with 333 bits of precision sage: CLF.interval_field() is CIF True
- class sage.rings.real_lazy.LazyAlgebraic#
Bases:
sage.rings.real_lazy.LazyFieldElement
This represents an algebraic number, specified by a polynomial over \(\QQ\) and a real or complex approximation.
EXAMPLES:
sage: x = polygen(QQ) sage: from sage.rings.real_lazy import LazyAlgebraic sage: a = LazyAlgebraic(RLF, x^2-2, 1.5) sage: a 1.414213562373095?
- eval(R)#
Convert
self
into an element ofR
.EXAMPLES:
sage: from sage.rings.real_lazy import LazyAlgebraic sage: a = LazyAlgebraic(CLF, QQ['x'].cyclotomic_polynomial(7), 0.6+0.8*CC.0) sage: a 0.6234898018587335? + 0.7818314824680299?*I sage: ComplexField(150)(a) # indirect doctest 0.62348980185873353052500488400423981063227473 + 0.78183148246802980870844452667405775023233452*I sage: a = LazyAlgebraic(CLF, QQ['x'].0^2-7, -2.0) sage: RR(a) -2.64575131106459 sage: RR(a)^2 7.00000000000000
- class sage.rings.real_lazy.LazyBinop#
Bases:
sage.rings.real_lazy.LazyFieldElement
A lazy element representing a binary (usually arithmetic) operation between two other lazy elements.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyBinop sage: a = LazyBinop(RLF, 2, 1/3, operator.add) sage: a 2.333333333333334? sage: Reals(200)(a) 2.3333333333333333333333333333333333333333333333333333333333
- depth()#
Return the depth of
self
as an arithmetic expression.This is the maximum number of dependent intermediate expressions when evaluating
self
, and is used to determine the precision needed to get the final result to the desired number of bits.It is equal to the maximum of the right and left depths, plus one.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyBinop sage: a = LazyBinop(RLF, 6, 8, operator.mul) sage: a.depth() 1 sage: b = LazyBinop(RLF, 2, a, operator.sub) sage: b.depth() 2
- eval(R)#
Convert the operands to elements of
R
, then perform the operation on them.EXAMPLES:
sage: from sage.rings.real_lazy import LazyBinop sage: a = LazyBinop(RLF, 6, 8, operator.add) sage: a.eval(RR) 14.0000000000000
A bit absurd:
sage: a.eval(str) '68'
- class sage.rings.real_lazy.LazyConstant#
Bases:
sage.rings.real_lazy.LazyFieldElement
This class represents a real or complex constant (such as
pi
orI
).- eval(R)#
Convert
self
into an element ofR
.EXAMPLES:
sage: from sage.rings.real_lazy import LazyConstant sage: a = LazyConstant(RLF, 'e') sage: RDF(a) # indirect doctest 2.718281828459045 sage: a = LazyConstant(CLF, 'I') sage: CC(a) 1.00000000000000*I
- class sage.rings.real_lazy.LazyField#
Bases:
sage.rings.ring.Field
The base class for lazy real fields.
Warning
LazyField uses
__getattr__()
, to implement:sage: CLF.pi 3.141592653589794?
I (NT, 20/04/2012) did not manage to have
__getattr__
callParent.__getattr__()
in case of failure; hence we can’t use this__getattr__
trick for extension types to recover the methods from categories. Therefore, at this point, no concrete subclass of this class should be an extension type (which is probably just fine):sage: RLF.__class__ <class 'sage.rings.real_lazy.RealLazyField_class_with_category'> sage: CLF.__class__ <class 'sage.rings.real_lazy.ComplexLazyField_class_with_category'>
- Element#
alias of
LazyWrapper
- algebraic_closure()#
Returns the algebraic closure of
self
, i.e., the complex lazy field.EXAMPLES:
sage: RLF.algebraic_closure() Complex Lazy Field sage: CLF.algebraic_closure() Complex Lazy Field
- interval_field(prec=None)#
Abstract method to create the corresponding interval field.
- class sage.rings.real_lazy.LazyFieldElement#
Bases:
sage.structure.element.FieldElement
- approx()#
Returns
self
as an element of an interval field.EXAMPLES:
sage: CLF(1/6).approx() 0.1666666666666667? sage: CLF(1/6).approx().parent() Complex Interval Field with 53 bits of precision
When the absolute value is involved, the result might be real:
sage: z = exp(CLF(1 + I/2)); z 2.38551673095914? + 1.303213729686996?*I sage: r = z.abs(); r 2.71828182845905? sage: parent(z.approx()) Complex Interval Field with 53 bits of precision sage: parent(r.approx()) Real Interval Field with 53 bits of precision
- continued_fraction()#
Return the continued fraction of self.
EXAMPLES:
sage: a = RLF(sqrt(2)) + RLF(sqrt(3)) sage: cf = a.continued_fraction() sage: cf [3; 6, 1, 5, 7, 1, 1, 4, 1, 38, 43, 1, 3, 2, 1, 1, 1, 1, 2, 4, ...] sage: cf.convergent(100) 444927297812646558239761867973501208151173610180916865469/141414466649174973335183571854340329919207428365474086063
- depth()#
Abstract method for returning the depth of
self
as an arithmetic expression.This is the maximum number of dependent intermediate expressions when evaluating
self
, and is used to determine the precision needed to get the final result to the desired number of bits.It is equal to the maximum of the right and left depths, plus one.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyBinop sage: a = LazyBinop(RLF, 6, 8, operator.mul) sage: a.depth() 1
- eval(R)#
Abstract method for converting
self
into an element ofR
.EXAMPLES:
sage: a = RLF(12) sage: a.eval(ZZ) 12
- class sage.rings.real_lazy.LazyNamedUnop#
Bases:
sage.rings.real_lazy.LazyUnop
This class is used to represent the many named methods attached to real numbers, and is instantiated by the
__getattr__
method ofLazyElements
.EXAMPLES:
sage: from sage.rings.real_lazy import LazyNamedUnop sage: a = LazyNamedUnop(RLF, 1, 'arcsin') sage: RR(a) 1.57079632679490 sage: a = LazyNamedUnop(RLF, 9, 'log', extra_args=(3,)) sage: RR(a) 2.00000000000000
- approx()#
Does something reasonable with functions that are not defined on the interval fields.
- eval(R)#
Convert
self
into an element ofR
.
- class sage.rings.real_lazy.LazyUnop#
Bases:
sage.rings.real_lazy.LazyFieldElement
Represents a unevaluated single function of one variable.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyUnop sage: a = LazyUnop(RLF, 3, sqrt); a 1.732050807568878? sage: a._arg 3 sage: a._op <function sqrt at ...> sage: Reals(100)(a) 1.7320508075688772935274463415 sage: Reals(100)(a)^2 3.0000000000000000000000000000
- depth()#
Return the depth of
self
as an arithmetic expression.This is the maximum number of dependent intermediate expressions when evaluating
self
, and is used to determine the precision needed to get the final result to the desired number of bits.It is equal to one more than the depth of its operand.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyUnop sage: a = LazyUnop(RLF, 3, sqrt) sage: a.depth() 1 sage: b = LazyUnop(RLF, a, sin) sage: b.depth() 2
- eval(R)#
Convert
self
into an element ofR
.EXAMPLES:
sage: from sage.rings.real_lazy import LazyUnop sage: a = LazyUnop(RLF, 3, sqrt) sage: a.eval(ZZ) sqrt(3)
- class sage.rings.real_lazy.LazyWrapper#
Bases:
sage.rings.real_lazy.LazyFieldElement
A lazy element that simply wraps an element of another ring.
EXAMPLES:
sage: from sage.rings.real_lazy import LazyWrapper sage: a = LazyWrapper(RLF, 3) sage: a._value 3
- continued_fraction()#
Return the continued fraction of self.
EXAMPLES:
sage: a = RLF(sqrt(2)) sage: a.continued_fraction() [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
- depth()#
Returns the depth of
self
as an expression, which is always 0.EXAMPLES:
sage: RLF(4).depth() 0
- eval(R)#
Convert
self
into an element ofR
.EXAMPLES:
sage: a = RLF(12) sage: a.eval(ZZ) 12 sage: a.eval(ZZ).parent() Integer Ring
- class sage.rings.real_lazy.LazyWrapperMorphism#
Bases:
sage.categories.morphism.Morphism
This morphism coerces elements from anywhere into lazy rings by creating a wrapper element (as fast as possible).
EXAMPLES:
sage: from sage.rings.real_lazy import LazyWrapperMorphism sage: f = LazyWrapperMorphism(QQ, RLF) sage: a = f(3); a 3 sage: type(a) <class 'sage.rings.real_lazy.LazyWrapper'> sage: a._value 3 sage: a._value.parent() Rational Field
- sage.rings.real_lazy.RealLazyField()#
Return the lazy real field.
EXAMPLES:
There is only one lazy real field:
sage: RealLazyField() is RealLazyField() True
- class sage.rings.real_lazy.RealLazyField_class#
Bases:
sage.rings.real_lazy.LazyField
This class represents the set of real numbers to unspecified precision. For the most part it simply wraps exact elements and defers evaluation until a specified precision is requested.
Its primary use is to connect the exact rings (such as number fields) to fixed precision real numbers. For example, to specify an embedding of a number field \(K\) into \(\RR\) one can map into this field and the coercion will then be able to carry the mapping to real fields of any precision.
EXAMPLES:
sage: a = RLF(1/3) sage: a 0.3333333333333334? sage: a + 1/5 0.5333333333333334? sage: a = RLF(1/3) sage: a 0.3333333333333334? sage: a + 5 5.333333333333334? sage: RealField(100)(a+5) 5.3333333333333333333333333333
sage: CC.0 + RLF(1/3) 0.333333333333333 + 1.00000000000000*I sage: ComplexField(200).0 + RLF(1/3) 0.33333333333333333333333333333333333333333333333333333333333 + 1.0000000000000000000000000000000000000000000000000000000000*I
- construction()#
Returns the functorial construction of
self
, namely, the completion of the rationals at infinity to infinite precision.EXAMPLES:
sage: c, S = RLF.construction(); S Rational Field sage: RLF == c(S) True
- gen(i=0)#
Return the \(i\)-th generator of
self
.EXAMPLES:
sage: RLF.gen() 1
- interval_field(prec=None)#
Returns the interval field that represents the same mathematical field as
self
.EXAMPLES:
sage: RLF.interval_field() Real Interval Field with 53 bits of precision sage: RLF.interval_field(200) Real Interval Field with 200 bits of precision
- sage.rings.real_lazy.make_element(parent, *args)#
Create an element of
parent
.EXAMPLES:
sage: a = RLF(pi) + RLF(sqrt(1/2)) # indirect doctest sage: bool(loads(dumps(a)) == a) True