Free resolutions#
Let \(R\) be a commutative ring. A finite free resolution of an \(R\)-module \(M\) is a chain complex of free \(R\)-modules
terminating with a zero module at the end that is exact (all homology groups are zero) such that the image of \(d_1\) is \(M\).
EXAMPLES:
sage: from sage.homology.free_resolution import FreeResolution
sage: S.<x,y,z,w> = PolynomialRing(QQ)
sage: m = matrix(S, 1, [z^2 - y*w, y*z - x*w, y^2 - x*z]).transpose()
sage: r = FreeResolution(m, name='S')
sage: r
S^1 <-- S^3 <-- S^2 <-- 0
sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2])
sage: r = I.free_resolution()
sage: r
S^1 <-- S^3 <-- S^2 <-- 0
sage: S.<x,y,z,w> = PolynomialRing(QQ)
sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2])
sage: r = I.graded_free_resolution()
sage: r
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
An example of a minimal free resolution from [CLO2005]:
sage: R.<x,y,z,w> = QQ[]
sage: I = R.ideal([y*z - x*w, y^3 - x^2*z, x*z^2 - y^2*w, z^3 - y*w^2])
sage: r = I.free_resolution()
sage: r
S^1 <-- S^4 <-- S^4 <-- S^1 <-- 0
sage: len(r)
3
sage: r.matrix(2)
[-z^2 -x*z y*w -y^2]
[ y 0 -x 0]
[ -w y z x]
[ 0 w 0 z]
AUTHORS:
Kwankyu Lee (2022-05-13): initial version
Travis Scrimshaw (2022-08-23): refactored for free module inputs
- class sage.homology.free_resolution.FiniteFreeResolution(module, name='S', **kwds)#
Bases:
sage.homology.free_resolution.FreeResolution
Finite free resolutions.
The matrix at index \(i\) in the list defines the differential map from \((i + 1)\)-th free module to the \(i\)-th free module over the base ring by multiplication on the left. The number of matrices in the list is the length of the resolution. The number of rows and columns of the matrices define the ranks of the free modules in the resolution.
Note that the first matrix in the list defines the differential map at homological index \(1\).
A subclass must provide a
_maps
attribute that contains a list of the maps defining the resolution.A subclass can define
_initial_differential
attribute that contains the \(0\)-th differential map whose codomain is the target of the free resolution.EXAMPLES:
sage: from sage.homology.free_resolution import FreeResolution sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = FreeResolution(I) sage: r.differential(0) Coercion map: From: Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field To: Quotient module by Submodule of Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Generated by the rows of the matrix: [-z^2 + y*w] [ y*z - x*w] [-y^2 + x*z]
- chain_complex()#
Return this resolution as a chain complex.
A chain complex in Sage has its own useful methods.
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: unicode_art(r.chain_complex()) ⎛-y x⎞ ⎜ z -y⎟ (z^2 - y*w y*z - x*w y^2 - x*z) ⎝-w z⎠ 0 <── C_0 <────────────────────────────── C_1 <────── C_2 <── 0
- differential(i)#
Return the
i
-th differential map.INPUT:
i
– a positive integer
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0 sage: r.differential(3) Free module morphism defined by the matrix [] Domain: Ambient free module of rank 0 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Codomain: Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field sage: r.differential(2) Free module morphism defined as left-multiplication by the matrix [-y x] [ z -y] [-w z] Domain: Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Codomain: Ambient free module of rank 3 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field sage: r.differential(1) Free module morphism defined as left-multiplication by the matrix [z^2 - y*w y*z - x*w y^2 - x*z] Domain: Ambient free module of rank 3 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Codomain: Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field sage: r.differential(0) Coercion map: From: Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field To: Quotient module by Submodule of Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Generated by the rows of the matrix: [-z^2 + y*w] [ y*z - x*w] [-y^2 + x*z]
- matrix(i)#
Return the matrix representing the
i
-th differential map.INPUT:
i
– a positive integer
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0 sage: r.matrix(3) [] sage: r.matrix(2) [-y x] [ z -y] [-w z] sage: r.matrix(1) [z^2 - y*w y*z - x*w y^2 - x*z]
- class sage.homology.free_resolution.FiniteFreeResolution_free_module(module, name='S', **kwds)#
Bases:
sage.homology.free_resolution.FiniteFreeResolution
Free resolutions of a free module.
INPUT:
module
– a free module or ideal over a PIDname
– the name of the base ring
EXAMPLES:
sage: R.<x> = QQ[] sage: M = R^3 sage: v = M([x^2, 2*x^2, 3*x^2]) sage: w = M([0, x, 2*x]) sage: S = M.submodule([v, w]) sage: S Free module of degree 3 and rank 2 over Univariate Polynomial Ring in x over Rational Field Echelon basis matrix: [ x^2 2*x^2 3*x^2] [ 0 x 2*x] sage: res = S.free_resolution() sage: res S^3 <-- S^2 <-- 0 sage: ascii_art(res.chain_complex()) [ x^2 0] [2*x^2 x] [3*x^2 2*x] 0 <-- C_0 <-------------- C_1 <-- 0 sage: R.<x> = PolynomialRing(QQ) sage: I = R.ideal([x^4 + 3*x^2 + 2]) sage: res = I.free_resolution() sage: res S^1 <-- S^1 <-- 0
- class sage.homology.free_resolution.FiniteFreeResolution_singular(module, name='S', algorithm='heuristic', **kwds)#
Bases:
sage.homology.free_resolution.FiniteFreeResolution
Minimal free resolutions of ideals or submodules of free modules of multivariate polynomial rings implemented in Singular.
INPUT:
module
– a submodule of a free module \(M\) of rank \(n\) over \(S\) or an ideal of a multi-variate polynomial ringname
– string (optional); name of the base ringalgorithm
– (default:'heuristic'
) Singular algorithm to compute a resolution ofideal
OUTPUT: a minimal free resolution of the ideal
If
module
is an ideal of \(S\), it is considered as a submodule of a free module of rank \(1\) over \(S\).The available algorithms and the corresponding Singular commands are shown below:
algorithm
Singular commands
minimal
mres(ideal)
shreyer
minres(sres(std(ideal)))
standard
minres(nres(std(ideal)))
heuristic
minres(res(std(ideal)))
EXAMPLES:
sage: from sage.homology.free_resolution import FreeResolution sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = FreeResolution(I) sage: r S^1 <-- S^3 <-- S^2 <-- 0 sage: len(r) 2
sage: FreeResolution(I, algorithm='minimal') S^1 <-- S^3 <-- S^2 <-- 0 sage: FreeResolution(I, algorithm='shreyer') S^1 <-- S^3 <-- S^2 <-- 0 sage: FreeResolution(I, algorithm='standard') S^1 <-- S^3 <-- S^2 <-- 0 sage: FreeResolution(I, algorithm='heuristic') S^1 <-- S^3 <-- S^2 <-- 0
We can also construct a resolution by passing in a matrix defining the initial differential:
sage: m = matrix(S, 1, [z^2 - y*w, y*z - x*w, y^2 - x*z]).transpose() sage: r = FreeResolution(m, name='S') sage: r S^1 <-- S^3 <-- S^2 <-- 0 sage: r.matrix(1) [z^2 - y*w y*z - x*w y^2 - x*z]
An additional construction is using a submodule of a free module:
sage: M = m.image() sage: r = FreeResolution(M, name='S') sage: r S^1 <-- S^3 <-- S^2 <-- 0
A nonhomogeneous ideal:
sage: I = S.ideal([z^2 - y*w, y*z - x*w, y^2 - x]) sage: R = FreeResolution(I) sage: R S^1 <-- S^3 <-- S^3 <-- S^1 <-- 0 sage: R.matrix(2) [ y*z - x*w y^2 - x 0] [-z^2 + y*w 0 y^2 - x] [ 0 -z^2 + y*w -y*z + x*w] sage: R.matrix(3) [ y^2 - x] [-y*z + x*w] [ z^2 - y*w]
- class sage.homology.free_resolution.FreeResolution(module, name='S', **kwds)#
Bases:
sage.structure.sage_object.SageObject
A free resolution.
Let \(R\) be a commutative ring. A free resolution of an \(R\)-module \(M\) is a (possibly infinite) chain complex of free \(R\)-modules
\[R^{n_1} \xleftarrow{d_1} R^{n_1} \xleftarrow{d_2} \cdots \xleftarrow{d_k} R^{n_k} \xleftarrow{d_{k+1}} \cdots\]that is exact (all homology groups are zero) such that the image of \(d_1\) is \(M\).
- differential(i)#
Return the
i
-th differential map.INPUT:
i
– a positive integer
- target()#
Return the codomain of the \(0\)-th differential map.
The codomain of the \(0\)-th differential map is the cokernel of the first differential map.
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0 sage: r.target() Quotient module by Submodule of Ambient free module of rank 1 over the integral domain Multivariate Polynomial Ring in x, y, z, w over Rational Field Generated by the rows of the matrix: [-z^2 + y*w] [ y*z - x*w] [-y^2 + x*z]