Polygons and triangles in hyperbolic geometry#

AUTHORS:

  • Hartmut Monien (2011-08)

  • Vincent Delecroix (2014-11)

class sage.plot.hyperbolic_polygon.HyperbolicPolygon(pts, model, options)#

Bases: sage.plot.hyperbolic_arc.HyperbolicArcCore

Primitive class for hyperbolic polygon type.

See hyperbolic_polygon? for information about plotting a hyperbolic polygon in the complex plane.

INPUT:

  • pts – coordinates of the polygon (as complex numbers)

  • options – dict of valid plot options to pass to constructor

EXAMPLES:

Note that constructions should use hyperbolic_polygon() or hyperbolic_triangle():

sage: from sage.plot.hyperbolic_polygon import HyperbolicPolygon
sage: print(HyperbolicPolygon([0, 1/2, I], "UHP", {}))
Hyperbolic polygon (0.000000000000000, 0.500000000000000, 1.00000000000000*I)
sage.plot.hyperbolic_polygon.hyperbolic_polygon(pts, model='UHP', resolution=200, alpha=1, fill=False, thickness=1, rgbcolor='blue', zorder=2, linestyle='solid', **options)#

Return a hyperbolic polygon in the hyperbolic plane with vertices pts.

Type ?hyperbolic_polygon to see all options.

INPUT:

  • pts – a list or tuple of complex numbers

OPTIONS:

  • model – default: UHP Model used for hyperbolic plane

  • alpha – default: 1

  • fill – default: False

  • thickness – default: 1

  • rgbcolor – default: 'blue'

  • linestyle – (default: 'solid') the style of the line, which is one of 'dashed', 'dotted', 'solid', 'dashdot', or '--', ':', '-', '-.', respectively

EXAMPLES:

Show a hyperbolic polygon with coordinates \(-1\), \(3i\), \(2+2i\), \(1+i\):

sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I])
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-1.svg

With more options:

sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I], fill=True, color='red')
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-2.svg

With a vertex at \(\infty\):

sage: hyperbolic_polygon([-1,0,1,Infinity], color='green')
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-3.svg

Poincare disc model is supported via the parameter model. Show a hyperbolic polygon in the Poincare disc model with coordinates \(1\), \(i\), \(-1\), \(-i\):

sage: hyperbolic_polygon([1,I,-1,-I], model="PD", color='green')
Graphics object consisting of 2 graphics primitives
../../_images/hyperbolic_polygon-4.svg

With more options:

sage: hyperbolic_polygon([1,I,-1,-I], model="PD", color='green', fill=True, linestyle="-")
Graphics object consisting of 2 graphics primitives
../../_images/hyperbolic_polygon-5.svg

Klein model is also supported via the parameter model. Show a hyperbolic polygon in the Klein model with coordinates \(1\), \(e^{i\pi/3}\), \(e^{i2\pi/3}\), \(-1\), \(e^{i4\pi/3}\), \(e^{i5\pi/3}\):

sage: p1 = 1
sage: p2 = (cos(pi/3), sin(pi/3))
sage: p3 = (cos(2*pi/3), sin(2*pi/3))
sage: p4 = -1
sage: p5 = (cos(4*pi/3), sin(4*pi/3))
sage: p6 = (cos(5*pi/3), sin(5*pi/3))
sage: hyperbolic_polygon([p1,p2,p3,p4,p5,p6], model="KM", fill=True, color='purple')
Graphics object consisting of 2 graphics primitives
../../_images/hyperbolic_polygon-6.svg

Hyperboloid model is supported partially, via the parameter model. Show a hyperbolic polygon in the hyperboloid model with coordinates \((3,3,\sqrt(19))\), \((3,-3,\sqrt(19))\), \((-3,-3,\sqrt(19))\), \((-3,3,\sqrt(19))\):

sage: pts = [(3,3,sqrt(19)),(3,-3,sqrt(19)),(-3,-3,sqrt(19)),(-3,3,sqrt(19))]
sage: hyperbolic_polygon(pts, model="HM")
Graphics3d Object
../../_images/hyperbolic_polygon-7.svg

Filling a hyperbolic_polygon in hyperboloid model is possible although jaggy. We show a filled hyperbolic polygon in the hyperboloid model with coordinates \((1,1,\sqrt(3))\), \((0,2,\sqrt(5))\), \((2,0,\sqrt(5))\). (The doctest is done at lower resolution than the picture below to give a faster result.)

sage: pts = [(1,1,sqrt(3)), (0,2,sqrt(5)), (2,0,sqrt(5))]
sage: hyperbolic_polygon(pts, model="HM", resolution=50,
....:                    color='yellow', fill=True)
Graphics3d Object
../../_images/hyperbolic_polygon-8.svg
sage.plot.hyperbolic_polygon.hyperbolic_triangle(a, b, c, model='UHP', **options)#

Return a hyperbolic triangle in the hyperbolic plane with vertices (a,b,c).

Type ?hyperbolic_polygon to see all options.

INPUT:

  • a, b, c – complex numbers in the upper half complex plane

OPTIONS:

  • alpha – default: 1

  • fill – default: False

  • thickness – default: 1

  • rgbcolor – default: 'blue'

  • linestyle – (default: 'solid') the style of the line, which is one of 'dashed', 'dotted', 'solid', 'dashdot', or '--', ':', '-', '-.', respectively.

EXAMPLES:

Show a hyperbolic triangle with coordinates \(0\), \(1/2 + i\sqrt{3}/2\) and \(-1/2 + i\sqrt{3}/2\):

sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2)
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-9.svg

A hyperbolic triangle with coordinates \(0\), \(1\) and \(2+i\) and a dashed line:

sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red', linestyle='--')
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-10.svg

A hyperbolic triangle with a vertex at \(\infty\):

sage: hyperbolic_triangle(-5,Infinity,5)
Graphics object consisting of 1 graphics primitive
../../_images/hyperbolic_polygon-11.svg

It can also plot a hyperbolic triangle in the Poincaré disk model:

sage: z1 = CC((cos(pi/3),sin(pi/3)))
sage: z2 = CC((0.6*cos(3*pi/4),0.6*sin(3*pi/4)))
sage: z3 = 1
sage: hyperbolic_triangle(z1, z2, z3, model="PD", color="red")
Graphics object consisting of 2 graphics primitives
../../_images/hyperbolic_polygon-12.svg
sage: hyperbolic_triangle(0.3+0.3*I, 0.8*I, -0.5-0.5*I, model="PD", color='magenta')
Graphics object consisting of 2 graphics primitives
../../_images/hyperbolic_polygon-13.svg