Polygons and triangles in hyperbolic geometry#
AUTHORS:
Hartmut Monien (2011-08)
Vincent Delecroix (2014-11)
- class sage.plot.hyperbolic_polygon.HyperbolicPolygon(pts, model, options)#
Bases:
sage.plot.hyperbolic_arc.HyperbolicArcCore
Primitive class for hyperbolic polygon type.
See
hyperbolic_polygon?
for information about plotting a hyperbolic polygon in the complex plane.INPUT:
pts
– coordinates of the polygon (as complex numbers)options
– dict of valid plot options to pass to constructor
EXAMPLES:
Note that constructions should use
hyperbolic_polygon()
orhyperbolic_triangle()
:sage: from sage.plot.hyperbolic_polygon import HyperbolicPolygon sage: print(HyperbolicPolygon([0, 1/2, I], "UHP", {})) Hyperbolic polygon (0.000000000000000, 0.500000000000000, 1.00000000000000*I)
- sage.plot.hyperbolic_polygon.hyperbolic_polygon(pts, model='UHP', resolution=200, alpha=1, fill=False, thickness=1, rgbcolor='blue', zorder=2, linestyle='solid', **options)#
Return a hyperbolic polygon in the hyperbolic plane with vertices
pts
.Type
?hyperbolic_polygon
to see all options.INPUT:
pts
– a list or tuple of complex numbers
OPTIONS:
model
– default:UHP
Model used for hyperbolic planealpha
– default: 1fill
– default:False
thickness
– default: 1rgbcolor
– default:'blue'
linestyle
– (default:'solid'
) the style of the line, which is one of'dashed'
,'dotted'
,'solid'
,'dashdot'
, or'--'
,':'
,'-'
,'-.'
, respectively
EXAMPLES:
Show a hyperbolic polygon with coordinates \(-1\), \(3i\), \(2+2i\), \(1+i\):
sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I]) Graphics object consisting of 1 graphics primitive
With more options:
sage: hyperbolic_polygon([-1,3*I,2+2*I,1+I], fill=True, color='red') Graphics object consisting of 1 graphics primitive
With a vertex at \(\infty\):
sage: hyperbolic_polygon([-1,0,1,Infinity], color='green') Graphics object consisting of 1 graphics primitive
Poincare disc model is supported via the parameter
model
. Show a hyperbolic polygon in the Poincare disc model with coordinates \(1\), \(i\), \(-1\), \(-i\):sage: hyperbolic_polygon([1,I,-1,-I], model="PD", color='green') Graphics object consisting of 2 graphics primitives
With more options:
sage: hyperbolic_polygon([1,I,-1,-I], model="PD", color='green', fill=True, linestyle="-") Graphics object consisting of 2 graphics primitives
Klein model is also supported via the parameter
model
. Show a hyperbolic polygon in the Klein model with coordinates \(1\), \(e^{i\pi/3}\), \(e^{i2\pi/3}\), \(-1\), \(e^{i4\pi/3}\), \(e^{i5\pi/3}\):sage: p1 = 1 sage: p2 = (cos(pi/3), sin(pi/3)) sage: p3 = (cos(2*pi/3), sin(2*pi/3)) sage: p4 = -1 sage: p5 = (cos(4*pi/3), sin(4*pi/3)) sage: p6 = (cos(5*pi/3), sin(5*pi/3)) sage: hyperbolic_polygon([p1,p2,p3,p4,p5,p6], model="KM", fill=True, color='purple') Graphics object consisting of 2 graphics primitives
Hyperboloid model is supported partially, via the parameter
model
. Show a hyperbolic polygon in the hyperboloid model with coordinates \((3,3,\sqrt(19))\), \((3,-3,\sqrt(19))\), \((-3,-3,\sqrt(19))\), \((-3,3,\sqrt(19))\):sage: pts = [(3,3,sqrt(19)),(3,-3,sqrt(19)),(-3,-3,sqrt(19)),(-3,3,sqrt(19))] sage: hyperbolic_polygon(pts, model="HM") Graphics3d Object
Filling a hyperbolic_polygon in hyperboloid model is possible although jaggy. We show a filled hyperbolic polygon in the hyperboloid model with coordinates \((1,1,\sqrt(3))\), \((0,2,\sqrt(5))\), \((2,0,\sqrt(5))\). (The doctest is done at lower resolution than the picture below to give a faster result.)
sage: pts = [(1,1,sqrt(3)), (0,2,sqrt(5)), (2,0,sqrt(5))] sage: hyperbolic_polygon(pts, model="HM", resolution=50, ....: color='yellow', fill=True) Graphics3d Object
- sage.plot.hyperbolic_polygon.hyperbolic_triangle(a, b, c, model='UHP', **options)#
Return a hyperbolic triangle in the hyperbolic plane with vertices
(a,b,c)
.Type
?hyperbolic_polygon
to see all options.INPUT:
a, b, c
– complex numbers in the upper half complex plane
OPTIONS:
alpha
– default: 1fill
– default:False
thickness
– default: 1rgbcolor
– default:'blue'
linestyle
– (default:'solid'
) the style of the line, which is one of'dashed'
,'dotted'
,'solid'
,'dashdot'
, or'--'
,':'
,'-'
,'-.'
, respectively.
EXAMPLES:
Show a hyperbolic triangle with coordinates \(0\), \(1/2 + i\sqrt{3}/2\) and \(-1/2 + i\sqrt{3}/2\):
sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2) Graphics object consisting of 1 graphics primitive
A hyperbolic triangle with coordinates \(0\), \(1\) and \(2+i\) and a dashed line:
sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red', linestyle='--') Graphics object consisting of 1 graphics primitive
A hyperbolic triangle with a vertex at \(\infty\):
sage: hyperbolic_triangle(-5,Infinity,5) Graphics object consisting of 1 graphics primitive
It can also plot a hyperbolic triangle in the Poincaré disk model:
sage: z1 = CC((cos(pi/3),sin(pi/3))) sage: z2 = CC((0.6*cos(3*pi/4),0.6*sin(3*pi/4))) sage: z3 = 1 sage: hyperbolic_triangle(z1, z2, z3, model="PD", color="red") Graphics object consisting of 2 graphics primitives
sage: hyperbolic_triangle(0.3+0.3*I, 0.8*I, -0.5-0.5*I, model="PD", color='magenta') Graphics object consisting of 2 graphics primitives