Submodules and subquotients of free modules#
Free modules and submodules of a free module (of finite rank) over a principal
ideal domain have well-defined notion of rank, and they are implemented in
sage.modules.free_module
. Here submodules with no rank are
implemented. For example, submodules of free modules over multivariate
polynomial rings with more than one variables have no notion of rank.
EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ)
sage: M = S**2
sage: N = M.submodule([vector([x - y, z]), vector([y * z, x * z])])
sage: N
Submodule of Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z over Rational Field
Generated by the rows of the matrix:
[x - y z]
[ y*z x*z]
AUTHORS:
Kwankyu Lee (2022-05): initial version
- class sage.modules.submodule.Submodule_free_ambient(ambient, gens, check=True, already_echelonized=False)#
Bases:
sage.modules.free_module.Module_free_ambient
Base class of submodules of ambient modules.
The ambient module is either a free module or a quotient of a free module by a submodule.
Note that if the ambient module is a quotient module, submodules of the quotient module are called subquotients.
INPUT:
ambient
– an ambient modulegens
– vectors of the ambient free module generating this submodulecheck
– boolean; ifTrue
, vectors ingens
are checked whether they belong to the ambient free modulealready_echelonized
– ignored; for compatibility with other submodules
EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y * z, x * z])]) sage: N Submodule of Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z over Rational Field Generated by the rows of the matrix: [x - y z] [ y*z x*z]
sage: M.coerce_map_from(N) Coercion map: From: Submodule of Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z over Rational Field Generated by the rows of the matrix: [x - y z] [ y*z x*z] To: Ambient free module of rank 2 over the integral domain Multivariate Polynomial Ring in x, y, z over Rational Field
- ambient_module()#
Return the ambient module of
self
.EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y * z, x * z])]) sage: N.ambient_module() is M True sage: N.zero_submodule().ambient_module() is M True sage: Q = M / N sage: Q.zero_submodule().ambient_module() is Q True
- gen(i=0)#
Return the \(i\)-th generator of this module.
EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y*z, x*z])]) sage: N.gen(0) (x - y, z)
- generators_matrix()#
Return the matrix defining
self
.EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y*z, x*z])]) sage: N.matrix() [x - y z] [ y*z x*z]
- gens()#
Return the generators of this submodule.
EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y * z, x * z])]) sage: N.gens() [ (x - y, z), (y*z, x*z) ]
- matrix()#
Return the matrix defining
self
.EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y*z, x*z])]) sage: N.matrix() [x - y z] [ y*z x*z]
- relations()#
Return the relations module of the ambient module.
If the ambient module is free, then the relations module is trivial.
EXAMPLES:
sage: S.<x,y,z> = PolynomialRing(QQ) sage: M = S**2 sage: N = M.submodule([vector([x - y, z]), vector([y * z, x * z])]) sage: N.relations() == M.zero_submodule() True sage: Q = M.quotient(N) sage: Q.zero_submodule().relations() == N True