Dimensions of spaces of modular forms#
AUTHORS:
William Stein
Jordi Quer
ACKNOWLEDGEMENT: The dimension formulas and implementations in this module grew out of a program that Bruce Kaskel wrote (around 1996) in PARI, which Kevin Buzzard subsequently extended. I (William Stein) then implemented it in C++ for Hecke. I also implemented it in Magma. Also, the functions for dimensions of spaces with nontrivial character are based on a paper (that has no proofs) by Cohen and Oesterlé [CO1977]. The formulas for \(\Gamma_H(N)\) were found and implemented by Jordi Quer.
The formulas here are more complete than in Hecke or Magma.
Currently the input to each function below is an integer and either a Dirichlet character \(\varepsilon\) or a finite index subgroup of \(\SL_2(\ZZ)\). If the input is a Dirichlet character \(\varepsilon\), the dimensions are for subspaces of \(M_k(\Gamma_1(N), \varepsilon)\), where \(N\) is the modulus of \(\varepsilon\).
These functions mostly call the methods dimension_cusp_forms
,
dimension_modular_forms
and so on of the corresponding congruence subgroup
classes.
REFERENCES:
- CO1977
H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires, p. 69-78 in Modular functions in one variable VI. Lecture Notes in Math. 627, Springer-Verlag, NewYork, 1977.
- sage.modular.dims.CO_delta(r, p, N, eps)#
This is used as an intermediate value in computations related to the paper of Cohen-Oesterlé.
INPUT:
r
– positive integerp
– a primeN
– positive integereps
– character
OUTPUT: element of the base ring of the character
EXAMPLES:
sage: G.<eps> = DirichletGroup(7) sage: sage.modular.dims.CO_delta(1,5,7,eps^3) 2
- sage.modular.dims.CO_nu(r, p, N, eps)#
This is used as an intermediate value in computations related to the paper of Cohen-Oesterlé.
INPUT:
r
– positive integerp
– a primeN
– positive integereps
– character
OUTPUT: element of the base ring of the character
EXAMPLES:
sage: G.<eps> = DirichletGroup(7) sage: G.<eps> = DirichletGroup(7) sage: sage.modular.dims.CO_nu(1,7,7,eps) -1
- sage.modular.dims.CohenOesterle(eps, k)#
Compute the Cohen-Oesterlé function associate to eps, \(k\).
This is a summand in the formula for the dimension of the space of cusp forms of weight \(2\) with character \(\varepsilon\).
INPUT:
eps
– Dirichlet characterk
– integer
OUTPUT: element of the base ring of eps.
EXAMPLES:
sage: G.<eps> = DirichletGroup(7) sage: sage.modular.dims.CohenOesterle(eps, 2) -2/3 sage: sage.modular.dims.CohenOesterle(eps, 4) -1
- sage.modular.dims.dimension_cusp_forms(X, k=2)#
The dimension of the space of cusp forms for the given congruence subgroup or Dirichlet character.
INPUT:
X
– congruence subgroup or Dirichlet character or integerk
– weight (integer)
EXAMPLES:
sage: from sage.modular.dims import dimension_cusp_forms sage: dimension_cusp_forms(5,4) 1 sage: dimension_cusp_forms(Gamma0(11),2) 1 sage: dimension_cusp_forms(Gamma1(13),2) 2 sage: dimension_cusp_forms(DirichletGroup(13).0^2,2) 1 sage: dimension_cusp_forms(DirichletGroup(13).0,3) 1 sage: dimension_cusp_forms(Gamma0(11),2) 1 sage: dimension_cusp_forms(Gamma0(11),0) 0 sage: dimension_cusp_forms(Gamma0(1),12) 1 sage: dimension_cusp_forms(Gamma0(1),2) 0 sage: dimension_cusp_forms(Gamma0(1),4) 0 sage: dimension_cusp_forms(Gamma0(389),2) 32 sage: dimension_cusp_forms(Gamma0(389),4) 97 sage: dimension_cusp_forms(Gamma0(2005),2) 199 sage: dimension_cusp_forms(Gamma0(11),1) 0 sage: dimension_cusp_forms(Gamma1(11),2) 1 sage: dimension_cusp_forms(Gamma1(1),12) 1 sage: dimension_cusp_forms(Gamma1(1),2) 0 sage: dimension_cusp_forms(Gamma1(1),4) 0 sage: dimension_cusp_forms(Gamma1(389),2) 6112 sage: dimension_cusp_forms(Gamma1(389),4) 18721 sage: dimension_cusp_forms(Gamma1(2005),2) 159201 sage: dimension_cusp_forms(Gamma1(11),1) 0 sage: e = DirichletGroup(13).0 sage: e.order() 12 sage: dimension_cusp_forms(e,2) 0 sage: dimension_cusp_forms(e^2,2) 1
Check that trac ticket #12640 is fixed:
sage: dimension_cusp_forms(DirichletGroup(1)(1), 12) 1 sage: dimension_cusp_forms(DirichletGroup(2)(1), 24) 5
- sage.modular.dims.dimension_eis(X, k=2)#
The dimension of the space of Eisenstein series for the given congruence subgroup.
INPUT:
X
– congruence subgroup or Dirichlet character or integerk
– weight (integer)
EXAMPLES:
sage: from sage.modular.dims import dimension_eis sage: dimension_eis(5,4) 2 sage: dimension_eis(Gamma0(11),2) 1 sage: dimension_eis(Gamma1(13),2) 11 sage: dimension_eis(Gamma1(2006),2) 3711 sage: e = DirichletGroup(13).0 sage: e.order() 12 sage: dimension_eis(e,2) 0 sage: dimension_eis(e^2,2) 2 sage: e = DirichletGroup(13).0 sage: e.order() 12 sage: dimension_eis(e,2) 0 sage: dimension_eis(e^2,2) 2 sage: dimension_eis(e,13) 2 sage: G = DirichletGroup(20) sage: dimension_eis(G.0,3) 4 sage: dimension_eis(G.1,3) 6 sage: dimension_eis(G.1^2,2) 6 sage: G = DirichletGroup(200) sage: e = prod(G.gens(), G(1)) sage: e.conductor() 200 sage: dimension_eis(e,2) 4 sage: from sage.modular.dims import dimension_modular_forms sage: dimension_modular_forms(Gamma1(4), 11) 6
- sage.modular.dims.dimension_modular_forms(X, k=2)#
The dimension of the space of cusp forms for the given congruence subgroup (either \(\Gamma_0(N)\), \(\Gamma_1(N)\), or \(\Gamma_H(N)\)) or Dirichlet character.
INPUT:
X
– congruence subgroup or Dirichlet characterk
– weight (integer)
EXAMPLES:
sage: from sage.modular.dims import dimension_modular_forms sage: dimension_modular_forms(Gamma0(11),2) 2 sage: dimension_modular_forms(Gamma0(11),0) 1 sage: dimension_modular_forms(Gamma1(13),2) 13 sage: dimension_modular_forms(GammaH(11, [10]), 2) 10 sage: dimension_modular_forms(GammaH(11, [10])) 10 sage: dimension_modular_forms(GammaH(11, [10]), 4) 20 sage: e = DirichletGroup(20).1 sage: dimension_modular_forms(e,3) 9 sage: from sage.modular.dims import dimension_cusp_forms sage: dimension_cusp_forms(e,3) 3 sage: from sage.modular.dims import dimension_eis sage: dimension_eis(e,3) 6 sage: dimension_modular_forms(11,2) 2
- sage.modular.dims.dimension_new_cusp_forms(X, k=2, p=0)#
Return the dimension of the new (or \(p\)-new) subspace of cusp forms for the character or group \(X\).
INPUT:
X
– integer, congruence subgroup or Dirichlet characterk
– weight (integer)p
– 0 or a prime
EXAMPLES:
sage: from sage.modular.dims import dimension_new_cusp_forms sage: dimension_new_cusp_forms(100,2) 1 sage: dimension_new_cusp_forms(Gamma0(100),2) 1 sage: dimension_new_cusp_forms(Gamma0(100),4) 5 sage: dimension_new_cusp_forms(Gamma1(100),2) 141 sage: dimension_new_cusp_forms(Gamma1(100),4) 463 sage: dimension_new_cusp_forms(DirichletGroup(100).1^2,2) 2 sage: dimension_new_cusp_forms(DirichletGroup(100).1^2,4) 8 sage: sum(dimension_new_cusp_forms(e,3) for e in DirichletGroup(30)) 12 sage: dimension_new_cusp_forms(Gamma1(30),3) 12
Check that trac ticket #12640 is fixed:
sage: dimension_new_cusp_forms(DirichletGroup(1)(1), 12) 1 sage: dimension_new_cusp_forms(DirichletGroup(2)(1), 24) 1
- sage.modular.dims.eisen(p)#
Return the Eisenstein number \(n\) which is the numerator of \((p-1)/12\).
INPUT:
p
– a prime
OUTPUT: Integer
EXAMPLES:
sage: [(p, sage.modular.dims.eisen(p)) for p in prime_range(24)] [(2, 1), (3, 1), (5, 1), (7, 1), (11, 5), (13, 1), (17, 4), (19, 3), (23, 11)]
- sage.modular.dims.sturm_bound(level, weight=2)#
Return the Sturm bound for modular forms with given level and weight.
For more details, see the documentation for the
sturm_bound
method ofsage.modular.arithgroup.CongruenceSubgroup
objects.INPUT:
level
– an integer (interpreted as a level for Gamma0) or acongruence subgroup
weight
– an integer \(\geq 2\) (default: 2)
EXAMPLES:
sage: from sage.modular.dims import sturm_bound sage: sturm_bound(11,2) 2 sage: sturm_bound(389,2) 65 sage: sturm_bound(1,12) 1 sage: sturm_bound(100,2) 30 sage: sturm_bound(1,36) 3 sage: sturm_bound(11) 2