Modular Forms over a Non-minimal Base Ring#
- class sage.modular.modform.ambient_R.ModularFormsAmbient_R(M, base_ring)#
Bases:
sage.modular.modform.ambient.ModularFormsAmbient
Ambient space of modular forms over a ring other than QQ.
EXAMPLES:
sage: M = ModularForms(23,2,base_ring=GF(7)) # indirect doctest sage: M Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Finite Field of size 7 sage: M == loads(dumps(M)) True
- change_ring(R)#
Return this modular forms space with the base ring changed to the ring R.
EXAMPLES:
sage: chi = DirichletGroup(109, CyclotomicField(3)).0 sage: M9 = ModularForms(chi, 2, base_ring = CyclotomicField(9)) sage: M9.change_ring(CyclotomicField(15)) Modular Forms space of dimension 10, character [zeta3 + 1] and weight 2 over Cyclotomic Field of order 15 and degree 8 sage: M9.change_ring(QQ) Traceback (most recent call last): ... ValueError: Space cannot be defined over Rational Field
- cuspidal_submodule()#
Return the cuspidal subspace of this space.
EXAMPLES:
sage: C = CuspForms(7, 4, base_ring=CyclotomicField(5)) # indirect doctest sage: type(C) <class 'sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_R_with_category'>
- modular_symbols(sign=0)#
Return the space of modular symbols attached to this space, with the given sign (default 0).