Dense matrices over the Real Double Field using NumPy#
EXAMPLES:
sage: b = Mat(RDF,2,3).basis()
sage: b[0,0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]
We deal with the case of zero rows or zero columns:
sage: m = MatrixSpace(RDF,0,3)
sage: m.zero_matrix()
[]
AUTHORS:
Jason Grout (2008-09): switch to NumPy backend, factored out the Matrix_double_dense class
Josh Kantor
William Stein: many bug fixes and touch ups.
- class sage.matrix.matrix_real_double_dense.Matrix_real_double_dense#
Bases:
sage.matrix.matrix_double_dense.Matrix_double_dense
Class that implements matrices over the real double field. These are supposed to be fast matrix operations using C doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.
EXAMPLES:
sage: m = Matrix(RDF, [[1,2],[3,4]]) sage: m**2 [ 7.0 10.0] [15.0 22.0] sage: n = m^(-1); n # rel tol 1e-15 [-1.9999999999999996 0.9999999999999998] [ 1.4999999999999998 -0.4999999999999999]
To compute eigenvalues, use the method
left_eigenvectors()
orright_eigenvectors()
.sage: p,e = m.right_eigenvectors()
The result is a pair
(p,e)
, wherep
is a diagonal matrix of eigenvalues ande
is a matrix whose columns are the eigenvectors.To solve a linear system \(Ax = b\) where
A = [[1,2],[3,4]]
and \(b = [5,6]\):sage: b = vector(RDF,[5,6]) sage: m.solve_right(b) # rel tol 1e-15 (-3.9999999999999987, 4.499999999999999)
See the methods
QR()
,LU()
, andSVD()
for QR, LU, and singular value decomposition.