Chart Functions#
In the context of a topological manifold \(M\) over a topological field \(K\), a chart function is a function from a chart codomain to \(K\). In other words, a chart function is a \(K\)-valued function of the coordinates associated to some chart. The internal coordinate expressions of chart functions and calculus on them are taken in charge by different calculus methods, at the choice of the user:
Sage’s default symbolic engine (Pynac + Maxima), implemented via the Symbolic Ring (
SR
)SymPy engine, denoted
sympy
hereafter
See CalculusMethod
for details.
AUTHORS:
Marco Mancini (2017) : initial version
Eric Gourgoulhon (2015) : for a previous class implementing only SR calculus (CoordFunctionSymb)
Florentin Jaffredo (2018) : series expansion with respect to a given parameter
- class sage.manifolds.chart_func.ChartFunction(parent, expression=None, calc_method=None, expansion_symbol=None, order=None)#
Bases:
sage.structure.element.AlgebraElement
,sage.structure.element.ModuleElementWithMutability
Function of coordinates of a given chart.
If \((U, \varphi)\) is a chart on a topological manifold \(M\) of dimension \(n\) over a topological field \(K\), a chart function associated to \((U, \varphi)\) is a map
\[\begin{split}\begin{array}{llcl} f:& V \subset K^n & \longrightarrow & K \\ & (x^1, \ldots, x^n) & \longmapsto & f(x^1, \ldots, x^n), \end{array}\end{split}\]where \(V\) is the codomain of \(\varphi\). In other words, \(f\) is a \(K\)-valued function of the coordinates associated to the chart \((U, \varphi)\).
The chart function \(f\) can be represented by expressions pertaining to different calculus methods; the currently implemented ones are
SR
(Sage’s Symbolic Ring)SymPy
See
expr()
for details.INPUT:
parent
– the algebra of chart functions on the chart \((U, \varphi)\)expression
– (default:None
) a symbolic expression representing \(f(x^1, \ldots, x^n)\), where \((x^1, \ldots, x^n)\) are the coordinates of the chart \((U, \varphi)\)calc_method
– string (default:None
): the calculus method with respect to which the internal expression ofself
must be initialized fromexpression
; one of'SR'
: Sage’s default symbolic engine (Symbolic Ring)'sympy'
: SymPyNone
: the chart current calculus method is assumed
expansion_symbol
– (default:None
) symbolic variable (the “small parameter”) with respect to which the coordinate expression is expanded in power series (around the zero value of this variable)order
– integer (default:None
); the order of the expansion ifexpansion_symbol
is notNone
; the order is defined as the degree of the polynomial representing the truncated power series inexpansion_symbol
Warning
The value of
order
is \(n-1\), where \(n\) is the order of the big \(O\) in the power series expansion
EXAMPLES:
A symbolic chart function on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x^2+3*y+1) sage: type(f) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'> sage: f.display() (x, y) ↦ x^2 + 3*y + 1 sage: f(x,y) x^2 + 3*y + 1
The symbolic expression is returned when asking for the direct display of the function:
sage: f x^2 + 3*y + 1 sage: latex(f) x^{2} + 3 \, y + 1
A similar output is obtained by means of the method
expr()
:sage: f.expr() x^2 + 3*y + 1
The expression returned by
expr()
is by default a Sage symbolic expression:sage: type(f.expr()) <class 'sage.symbolic.expression.Expression'>
A SymPy expression can also be asked for:
sage: f.expr('sympy') x**2 + 3*y + 1 sage: type(f.expr('sympy')) <class 'sympy.core.add.Add'>
The value of the function at specified coordinates is obtained by means of the standard parentheses notation:
sage: f(2,-1) 2 sage: var('a b') (a, b) sage: f(a,b) a^2 + 3*b + 1
An unspecified chart function:
sage: g = X.function(function('G')(x, y)) sage: g G(x, y) sage: g.display() (x, y) ↦ G(x, y) sage: g.expr() G(x, y) sage: g(2,3) G(2, 3)
Coordinate functions can be compared to other values:
sage: f = X.function(x^2+3*y+1) sage: f == 2 False sage: f == x^2 + 3*y + 1 True sage: g = X.function(x*y) sage: f == g False sage: h = X.function(x^2+3*y+1) sage: f == h True
A coercion by means of the restriction is implemented:
sage: D = M.open_subset('D') sage: X_D = X.restrict(D, x^2+y^2<1) # open disk sage: c = X_D.function(x^2) sage: c + f 2*x^2 + 3*y + 1
Expansion to a given order with respect to a small parameter:
sage: t = var('t') # the small parameter sage: f = X.function(cos(t)*x*y, expansion_symbol=t, order=2)
The expansion is triggered by the call to
simplify()
:sage: f x*y*cos(t) sage: f.simplify() -1/2*t^2*x*y + x*y
Differences between
ChartFunction
and callable symbolic expressionsCallable symbolic expressions are defined directly from symbolic expressions of the coordinates:
sage: f0(x,y) = x^2 + 3*y + 1 sage: type(f0) <class 'sage.symbolic.expression.Expression'> sage: f0 (x, y) |--> x^2 + 3*y + 1 sage: f0(x,y) x^2 + 3*y + 1
To get an output similar to that of
f0
for a chart function, we must use the methoddisplay()
:sage: f = X.function(x^2+3*y+1) sage: f x^2 + 3*y + 1 sage: f.display() (x, y) ↦ x^2 + 3*y + 1 sage: f(x,y) x^2 + 3*y + 1
More importantly, instances of
ChartFunction
differ from callable symbolic expression by the automatic simplifications in all operations. For instance, adding the two callable symbolic expressions:sage: f0(x,y,z) = cos(x)^2 ; g0(x,y,z) = sin(x)^2
results in:
sage: f0 + g0 (x, y, z) |--> cos(x)^2 + sin(x)^2
To get \(1\), one has to call
simplify_trig()
:sage: (f0 + g0).simplify_trig() (x, y, z) |--> 1
On the contrary, the sum of the corresponding
ChartFunction
instances is automatically simplified (seesimplify_chain_real()
andsimplify_chain_generic()
for details):sage: f = X.function(cos(x)^2) ; g = X.function(sin(x)^2) sage: f + g 1
Another difference regards the display of partial derivatives: for callable symbolic functions, it involves
diff
:sage: g = function('g')(x, y) sage: f0(x,y) = diff(g, x) + diff(g, y) sage: f0 (x, y) |--> diff(g(x, y), x) + diff(g(x, y), y)
while for chart functions, the display is more “textbook” like:
sage: f = X.function(diff(g, x) + diff(g, y)) sage: f d(g)/dx + d(g)/dy
The difference is even more dramatic on LaTeX outputs:
sage: latex(f0) \left( x, y \right) \ {\mapsto} \ \frac{\partial}{\partial x}g\left(x, y\right) + \frac{\partial}{\partial y}g\left(x, y\right) sage: latex(f) \frac{\partial\,g}{\partial x} + \frac{\partial\,g}{\partial y}
Note that this regards only the display of coordinate functions: internally, the
diff
notation is still used, as we can check by asking for the symbolic expression stored inf
:sage: f.expr() diff(g(x, y), x) + diff(g(x, y), y)
One can switch to Pynac notation by changing the options:
sage: Manifold.options.textbook_output=False sage: latex(f) \frac{\partial}{\partial x}g\left(x, y\right) + \frac{\partial}{\partial y}g\left(x, y\right) sage: Manifold.options._reset() sage: latex(f) \frac{\partial\,g}{\partial x} + \frac{\partial\,g}{\partial y}
Another difference between
ChartFunction
and callable symbolic expression is the possibility to switch off the display of the arguments of unspecified functions. Consider for instance:sage: f = X.function(function('u')(x, y) * function('v')(x, y)) sage: f u(x, y)*v(x, y) sage: f0(x,y) = function('u')(x, y) * function('v')(x, y) sage: f0 (x, y) |--> u(x, y)*v(x, y)
If there is a clear understanding that \(u\) and \(v\) are functions of \((x,y)\), the explicit mention of the latter can be cumbersome in lengthy tensor expressions. We can switch it off by:
sage: Manifold.options.omit_function_arguments=True sage: f u*v
Note that neither the callable symbolic expression
f0
nor the internal expression off
is affected by the above command:sage: f0 (x, y) |--> u(x, y)*v(x, y) sage: f.expr() u(x, y)*v(x, y)
We revert to the default behavior by:
sage: Manifold.options._reset() sage: f u(x, y)*v(x, y)
- __call__(*coords, **options)#
Compute the value of the function at specified coordinates.
INPUT:
*coords
– list of coordinates \((x^1, \ldots, x^n)\), where the function \(f\) is to be evaluated**options
– allows to passsimplify=False
to disable the call of the simplification chain on the result
OUTPUT:
the value \(f(x^1, \ldots, x^n)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(sin(x*y)) sage: f.__call__(-2, 3) -sin(6) sage: f(-2, 3) -sin(6) sage: var('a b') (a, b) sage: f.__call__(a, b) sin(a*b) sage: f(a,b) sin(a*b) sage: f.__call__(pi, 1) 0 sage: f.__call__(pi, 1/2) 1
With SymPy:
sage: X.calculus_method().set('sympy') sage: f(-2,3) -sin(6) sage: type(f(-2,3)) <class 'sympy.core.mul.Mul'> sage: f(a,b) sin(a*b) sage: type(f(a,b)) sin sage: type(f(pi,1)) <class 'sympy.core.numbers.Zero'> sage: f(pi, 1/2) 1 sage: type(f(pi, 1/2)) <class 'sympy.core.numbers.One'>
- arccos()#
Arc cosine of
self
.OUTPUT:
chart function \(\arccos(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arccos() arccos(x*y) sage: arccos(f) # equivalent to f.arccos() arccos(x*y) sage: acos(f) # equivalent to f.arccos() arccos(x*y) sage: arccos(f).display() (x, y) ↦ arccos(x*y) sage: arccos(X.zero_function()).display() (x, y) ↦ 1/2*pi
The same test with SymPy:
sage: M.set_calculus_method('sympy') sage: f = X.function(x*y) sage: f.arccos() acos(x*y) sage: arccos(f) # equivalent to f.arccos() acos(x*y) sage: acos(f) # equivalent to f.arccos() acos(x*y) sage: arccos(f).display() (x, y) ↦ acos(x*y)
- arccosh()#
Inverse hyperbolic cosine of
self
.OUTPUT:
chart function \(\mathrm{arccosh}(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arccosh() arccosh(x*y) sage: arccosh(f) # equivalent to f.arccosh() arccosh(x*y) sage: acosh(f) # equivalent to f.arccosh() arccosh(x*y) sage: arccosh(f).display() (x, y) ↦ arccosh(x*y) sage: arccosh(X.function(1)) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.arccosh() acosh(x*y) sage: arccosh(f) # equivalent to f.arccosh() acosh(x*y) sage: acosh(f) # equivalent to f.arccosh() acosh(x*y)
- arcsin()#
Arc sine of
self
.OUTPUT:
chart function \(\arcsin(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arcsin() arcsin(x*y) sage: arcsin(f) # equivalent to f.arcsin() arcsin(x*y) sage: asin(f) # equivalent to f.arcsin() arcsin(x*y) sage: arcsin(f).display() (x, y) ↦ arcsin(x*y) sage: arcsin(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.arcsin() asin(x*y) sage: arcsin(f) # equivalent to f.arcsin() asin(x*y) sage: asin(f) # equivalent to f.arcsin() asin(x*y)
- arcsinh()#
Inverse hyperbolic sine of
self
.OUTPUT:
chart function \(\mathrm{arcsinh}(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arcsinh() arcsinh(x*y) sage: arcsinh(f) # equivalent to f.arcsinh() arcsinh(x*y) sage: asinh(f) # equivalent to f.arcsinh() arcsinh(x*y) sage: arcsinh(f).display() (x, y) ↦ arcsinh(x*y) sage: arcsinh(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.arcsinh() asinh(x*y) sage: arcsinh(f) # equivalent to f.arcsinh() asinh(x*y) sage: asinh(f) # equivalent to f.arcsinh() asinh(x*y)
- arctan()#
Arc tangent of
self
.OUTPUT:
chart function \(\arctan(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arctan() arctan(x*y) sage: arctan(f) # equivalent to f.arctan() arctan(x*y) sage: atan(f) # equivalent to f.arctan() arctan(x*y) sage: arctan(f).display() (x, y) ↦ arctan(x*y) sage: arctan(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.arctan() atan(x*y) sage: arctan(f) # equivalent to f.arctan() atan(x*y) sage: atan(f) # equivalent to f.arctan() atan(x*y)
- arctanh()#
Inverse hyperbolic tangent of
self
.OUTPUT:
chart function \(\mathrm{arctanh}(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.arctanh() arctanh(x*y) sage: arctanh(f) # equivalent to f.arctanh() arctanh(x*y) sage: atanh(f) # equivalent to f.arctanh() arctanh(x*y) sage: arctanh(f).display() (x, y) ↦ arctanh(x*y) sage: arctanh(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.arctanh() atanh(x*y) sage: arctanh(f) # equivalent to f.arctanh() atanh(x*y) sage: atanh(f) # equivalent to f.arctanh() atanh(x*y)
- chart()#
Return the chart with respect to which
self
is defined.OUTPUT:
a
Chart
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(1+x+y^2) sage: f.chart() Chart (M, (x, y)) sage: f.chart() is X True
- collect(s)#
Collect the coefficients of \(s\) in the expression of
self
into a group.INPUT:
s
– the symbol whose coefficients will be collected
OUTPUT:
self
with the coefficients ofs
grouped in its expression
EXAMPLES:
Action on a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x^2*y + x*y + (x*y)^2) sage: f.display() (x, y) ↦ x^2*y^2 + x^2*y + x*y sage: f.collect(y) x^2*y^2 + (x^2 + x)*y
The method
collect()
has changed the expression off
:sage: f.display() (x, y) ↦ x^2*y^2 + (x^2 + x)*y
The same test with SymPy
sage: X.calculus_method().set('sympy') sage: f = X.function(x^2*y + x*y + (x*y)^2) sage: f.display() (x, y) ↦ x**2*y**2 + x**2*y + x*y sage: f.collect(y) x**2*y**2 + y*(x**2 + x)
- collect_common_factors()#
Collect common factors in the expression of
self
.This method does not perform a full factorization but only looks for factors which are already explicitly present.
OUTPUT:
self
with the common factors collected in its expression
EXAMPLES:
Action on a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x/(x^2*y + x*y)) sage: f.display() (x, y) ↦ x/(x^2*y + x*y) sage: f.collect_common_factors() 1/((x + 1)*y)
The method
collect_common_factors()
has changed the expression off
:sage: f.display() (x, y) ↦ 1/((x + 1)*y)
The same test with SymPy:
sage: X.calculus_method().set('sympy') sage: g = X.function(x/(x^2*y + x*y)) sage: g.display() (x, y) ↦ x/(x**2*y + x*y) sage: g.collect_common_factors() 1/(y*(x + 1))
- copy()#
Return an exact copy of the object.
OUTPUT:
a
ChartFunctionSymb
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x+y^2) sage: g = f.copy(); g y^2 + x
By construction,
g
is identical tof
:sage: type(g) == type(f) True sage: g == f True
but it is not the same object:
sage: g is f False
- cos()#
Cosine of
self
.OUTPUT:
chart function \(\cos(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.cos() cos(x*y) sage: cos(f) # equivalent to f.cos() cos(x*y) sage: cos(f).display() (x, y) ↦ cos(x*y) sage: cos(X.zero_function()).display() (x, y) ↦ 1
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.cos() cos(x*y) sage: cos(f) # equivalent to f.cos() cos(x*y)
- cosh()#
Hyperbolic cosine of
self
.OUTPUT:
chart function \(\cosh(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.cosh() cosh(x*y) sage: cosh(f) # equivalent to f.cosh() cosh(x*y) sage: cosh(f).display() (x, y) ↦ cosh(x*y) sage: cosh(X.zero_function()).display() (x, y) ↦ 1
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.cosh() cosh(x*y) sage: cosh(f) # equivalent to f.cosh() cosh(x*y)
- derivative(coord)#
Partial derivative with respect to a coordinate.
INPUT:
coord
– either the coordinate \(x^i\) with respect to which the derivative of the chart function \(f\) is to be taken, or the index \(i\) labelling this coordinate (with the index convention defined on the chart domain via the parameterstart_index
)
OUTPUT:
a
ChartFunction
representing the partial derivative \(\frac{\partial f}{\partial x^i}\)
EXAMPLES:
Partial derivatives of a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart(calc_method='SR') sage: f = X.function(x^2+3*y+1); f x^2 + 3*y + 1 sage: f.derivative(x) 2*x sage: f.derivative(y) 3
An alias is
diff
:sage: f.diff(x) 2*x
Each partial derivative is itself a chart function:
sage: type(f.diff(x)) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'>
The same result is returned by the function
diff
:sage: diff(f, x) 2*x
An index can be used instead of the coordinate symbol:
sage: f.diff(0) 2*x sage: diff(f, 1) 3
The index range depends on the convention used on the chart’s domain:
sage: M = Manifold(2, 'M', structure='topological', start_index=1) sage: X.<x,y> = M.chart() sage: f = X.function(x^2+3*y+1) sage: f.diff(0) Traceback (most recent call last): ... ValueError: coordinate index out of range sage: f.diff(1) 2*x sage: f.diff(2) 3
The same test with SymPy:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart(calc_method='sympy') sage: f = X.function(x^2+3*y+1); f x**2 + 3*y + 1 sage: f.diff(x) 2*x sage: f.diff(y) 3
- diff(coord)#
Partial derivative with respect to a coordinate.
INPUT:
coord
– either the coordinate \(x^i\) with respect to which the derivative of the chart function \(f\) is to be taken, or the index \(i\) labelling this coordinate (with the index convention defined on the chart domain via the parameterstart_index
)
OUTPUT:
a
ChartFunction
representing the partial derivative \(\frac{\partial f}{\partial x^i}\)
EXAMPLES:
Partial derivatives of a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart(calc_method='SR') sage: f = X.function(x^2+3*y+1); f x^2 + 3*y + 1 sage: f.derivative(x) 2*x sage: f.derivative(y) 3
An alias is
diff
:sage: f.diff(x) 2*x
Each partial derivative is itself a chart function:
sage: type(f.diff(x)) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'>
The same result is returned by the function
diff
:sage: diff(f, x) 2*x
An index can be used instead of the coordinate symbol:
sage: f.diff(0) 2*x sage: diff(f, 1) 3
The index range depends on the convention used on the chart’s domain:
sage: M = Manifold(2, 'M', structure='topological', start_index=1) sage: X.<x,y> = M.chart() sage: f = X.function(x^2+3*y+1) sage: f.diff(0) Traceback (most recent call last): ... ValueError: coordinate index out of range sage: f.diff(1) 2*x sage: f.diff(2) 3
The same test with SymPy:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart(calc_method='sympy') sage: f = X.function(x^2+3*y+1); f x**2 + 3*y + 1 sage: f.diff(x) 2*x sage: f.diff(y) 3
- disp()#
Display
self
in arrow notation. For display the standardSR
representation is used.The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
Coordinate function on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(cos(x*y/2)) sage: f.display() (x, y) ↦ cos(1/2*x*y) sage: latex(f.display()) \left(x, y\right) \mapsto \cos\left(\frac{1}{2} \, x y\right)
A shortcut is
disp()
:sage: f.disp() (x, y) ↦ cos(1/2*x*y)
Display of the zero function:
sage: X.zero_function().display() (x, y) ↦ 0
- display()#
Display
self
in arrow notation. For display the standardSR
representation is used.The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
Coordinate function on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(cos(x*y/2)) sage: f.display() (x, y) ↦ cos(1/2*x*y) sage: latex(f.display()) \left(x, y\right) \mapsto \cos\left(\frac{1}{2} \, x y\right)
A shortcut is
disp()
:sage: f.disp() (x, y) ↦ cos(1/2*x*y)
Display of the zero function:
sage: X.zero_function().display() (x, y) ↦ 0
- exp()#
Exponential of
self
.OUTPUT:
chart function \(\exp(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x+y) sage: f.exp() e^(x + y) sage: exp(f) # equivalent to f.exp() e^(x + y) sage: exp(f).display() (x, y) ↦ e^(x + y) sage: exp(X.zero_function()) 1
The same test with SymPy:
sage: X.calculus_method().set('sympy') sage: f = X.function(x+y) sage: f.exp() exp(x + y) sage: exp(f) # equivalent to f.exp() exp(x + y) sage: exp(f).display() (x, y) ↦ exp(x + y) sage: exp(X.zero_function()) 1
- expand()#
Expand the coordinate expression of
self
.OUTPUT:
self
with its expression expanded
EXAMPLES:
Expanding a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function((x - y)^2) sage: f.display() (x, y) ↦ (x - y)^2 sage: f.expand() x^2 - 2*x*y + y^2
The method
expand()
has changed the expression off
:sage: f.display() (x, y) ↦ x^2 - 2*x*y + y^2
The same test with SymPy
sage: X.calculus_method().set('sympy') sage: g = X.function((x - y)^2) sage: g.expand() x**2 - 2*x*y + y**2
- expr(method=None)#
Return the symbolic expression of
self
in terms of the chart coordinates, as an object of a specified calculus method.INPUT:
method
– string (default:None
): the calculus method which the returned expression belongs to; one of'SR'
: Sage’s default symbolic engine (Symbolic Ring)'sympy'
: SymPyNone
: the chart current calculus method is assumed
OUTPUT:
a
Sage symbolic expression
ifmethod
is'SR'
a SymPy object if
method
is'sympy'
EXAMPLES:
Chart function on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x^2+y) sage: f.expr() x^2 + y sage: type(f.expr()) <class 'sage.symbolic.expression.Expression'>
Asking for the SymPy expression:
sage: f.expr('sympy') x**2 + y sage: type(f.expr('sympy')) <class 'sympy.core.add.Add'>
The default corresponds to the current calculus method, here the one based on the Symbolic Ring
SR
:sage: f.expr() is f.expr('SR') True
If we change the current calculus method on chart
X
, we change the default:sage: X.calculus_method().set('sympy') sage: f.expr() x**2 + y sage: f.expr() is f.expr('sympy') True sage: X.calculus_method().set('SR') # revert back to SR
Internally, the expressions corresponding to various calculus methods are stored in the dictionary
_express
:sage: for method in sorted(f._express): ....: print("'{}': {}".format(method, f._express[method])) ....: 'SR': x^2 + y 'sympy': x**2 + y
The method
expr()
is useful for accessing to all the symbolic expression functionalities in Sage; for instance:sage: var('a') a sage: f = X.function(a*x*y); f.display() (x, y) ↦ a*x*y sage: f.expr() a*x*y sage: f.expr().subs(a=2) 2*x*y
Note that for substituting the value of a coordinate, the function call can be used as well:
sage: f(x,3) 3*a*x sage: bool( f(x,3) == f.expr().subs(y=3) ) True
- factor()#
Factorize the coordinate expression of
self
.OUTPUT:
self
with its expression factorized
EXAMPLES:
Factorization of a 2-dimensional chart function:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x^2 + 2*x*y + y^2) sage: f.display() (x, y) ↦ x^2 + 2*x*y + y^2 sage: f.factor() (x + y)^2
The method
factor()
has changed the expression off
:sage: f.display() (x, y) ↦ (x + y)^2
The same test with SymPy
sage: X.calculus_method().set('sympy') sage: g = X.function(x^2 + 2*x*y + y^2) sage: g.display() (x, y) ↦ x**2 + 2*x*y + y**2 sage: g.factor() (x + y)**2
- is_trivial_one()#
Check if
self
is trivially equal to one without any simplification.This method is supposed to be fast as compared with
self == 1
and is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(1) sage: f.is_trivial_one() True sage: f = X.function(float(1.0)) sage: f.is_trivial_one() True sage: f = X.function(x-x+1) sage: f.is_trivial_one() True sage: X.one_function().is_trivial_one() True
No simplification is attempted, so that
False
is returned for non-trivial cases:sage: f = X.function(cos(x)^2 + sin(x)^2) sage: f.is_trivial_one() False
On the contrary, the method
is_zero()
and the direct comparison to one involve some simplification algorithms and returnTrue
:sage: (f - 1).is_zero() True sage: f == 1 True
- is_trivial_zero()#
Check if
self
is trivially equal to zero without any simplification.This method is supposed to be fast as compared with
self.is_zero()
orself == 0
and is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(0) sage: f.is_trivial_zero() True sage: f = X.function(float(0.0)) sage: f.is_trivial_zero() True sage: f = X.function(x-x) sage: f.is_trivial_zero() True sage: X.zero_function().is_trivial_zero() True
No simplification is attempted, so that
False
is returned for non-trivial cases:sage: f = X.function(cos(x)^2 + sin(x)^2 - 1) sage: f.is_trivial_zero() False
On the contrary, the method
is_zero()
and the direct comparison to zero involve some simplification algorithms and returnTrue
:sage: f.is_zero() True sage: f == 0 True
- is_unit()#
Return
True
iffself
is not trivially zero since most chart functions are invertible and an actual computation would take too much time.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x^2+3*y+1) sage: f.is_unit() True sage: zero = X.function(0) sage: zero.is_unit() False
- log(base=None)#
Logarithm of
self
.INPUT:
base
– (default:None
) base of the logarithm; ifNone
, the natural logarithm (i.e. logarithm to base \(e\)) is returned
OUTPUT:
chart function \(\log_a(f)\), where \(f\) is the current chart function and \(a\) is the base
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x+y) sage: f.log() log(x + y) sage: log(f) # equivalent to f.log() log(x + y) sage: log(f).display() (x, y) ↦ log(x + y) sage: f.log(2) log(x + y)/log(2) sage: log(f, 2) log(x + y)/log(2)
The same test with SymPy:
sage: X.calculus_method().set('sympy') sage: f = X.function(x+y) sage: f.log() log(x + y) sage: log(f) # equivalent to f.log() log(x + y) sage: log(f).display() (x, y) ↦ log(x + y) sage: f.log(2) log(x + y)/log(2) sage: log(f, 2) log(x + y)/log(2)
- scalar_field(name=None, latex_name=None)#
Construct the scalar field that has
self
as coordinate expression.The domain of the scalar field is the open subset covered by the chart on which
self
is defined.INPUT:
name
– (default:None
) name given to the scalar fieldlatex_name
– (default:None
) LaTeX symbol to denote the scalar field; ifNone
, the LaTeX symbol is set toname
OUTPUT:
EXAMPLES:
Construction of a scalar field on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: c_xy.<x,y> = M.chart() sage: fc = c_xy.function(x+2*y^3) sage: f = fc.scalar_field() ; f Scalar field on the 2-dimensional topological manifold M sage: f.display() M → ℝ (x, y) ↦ 2*y^3 + x sage: f.coord_function(c_xy) is fc True
- set_expr(calc_method, expression)#
Add an expression in a particular calculus method
self
. Some control is done to verify the consistency between the different representations of the same expression.INPUT:
calc_method
– calculus methodexpression
– symbolic expression
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(1+x^2) sage: f._repr_() 'x^2 + 1' sage: f.set_expr('sympy','x**2+1') sage: f # indirect doctest x^2 + 1 sage: g = X.function(1+x^3) sage: g._repr_() 'x^3 + 1' sage: g.set_expr('sympy','x**2+y') Traceback (most recent call last): ... ValueError: Expressions are not equal
- simplify()#
Simplify the coordinate expression of
self
.For details about the employed chain of simplifications for the
SR
calculus method, seesimplify_chain_real()
for chart functions on real manifolds andsimplify_chain_generic()
for the generic case.If
self
has been defined with the small parameterexpansion_symbol
and some truncation order, the coordinate expression ofself
will be expanded in power series of that parameter and truncated to the given order.OUTPUT:
self
with its coordinate expression simplified
EXAMPLES:
Simplification of a chart function on a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(cos(x)^2 + sin(x)^2 + sqrt(x^2)) sage: f.display() (x, y) ↦ cos(x)^2 + sin(x)^2 + abs(x) sage: f.simplify() abs(x) + 1
The method
simplify()
has changed the expression off
:sage: f.display() (x, y) ↦ abs(x) + 1
Another example:
sage: f = X.function((x^2-1)/(x+1)); f (x^2 - 1)/(x + 1) sage: f.simplify() x - 1
Examples taking into account the declared range of a coordinate:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart('x:(1,+oo) y') sage: f = X.function(sqrt(x^2-2*x+1)); f sqrt(x^2 - 2*x + 1) sage: f.simplify() x - 1
sage: forget() # to clear the previous assumption on x sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart('x:(-oo,0) y') sage: f = X.function(sqrt(x^2-2*x+1)); f sqrt(x^2 - 2*x + 1) sage: f.simplify() -x + 1
The same tests with SymPy:
sage: forget() # to clear the previous assumption on x sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart(calc_method='sympy') sage: f = X.function(cos(x)^2 + sin(x)^2 + sqrt(x^2)); f sin(x)**2 + cos(x)**2 + Abs(x) sage: f.simplify() Abs(x) + 1
sage: f = X.function((x^2-1)/(x+1)); f (x**2 - 1)/(x + 1) sage: f.simplify() x - 1
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart('x:(1,+oo) y', calc_method='sympy') sage: f = X.function(sqrt(x^2-2*x+1)); f sqrt(x**2 - 2*x + 1) sage: f.simplify() x - 1
sage: forget() # to clear the previous assumption on x sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart('x:(-oo,0) y', calc_method='sympy') sage: f = X.function(sqrt(x^2-2*x+1)); f sqrt(x**2 - 2*x + 1) sage: f.simplify() 1 - x
Power series expansion with respect to a small parameter \(t\) (at the moment, this is implemented only for the
SR
calculus backend, hence the first line below):sage: X.calculus_method().set('SR') sage: t = var('t') sage: f = X.function(exp(t*x), expansion_symbol=t, order=3)
At this stage, \(f\) is not expanded in power series:
sage: f e^(t*x)
Invoking
simplify()
triggers the expansion to the given order:sage: f.simplify() 1/6*t^3*x^3 + 1/2*t^2*x^2 + t*x + 1 sage: f.display() (x, y) ↦ 1/6*t^3*x^3 + 1/2*t^2*x^2 + t*x + 1
- sin()#
Sine of
self
.OUTPUT:
chart function \(\sin(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.sin() sin(x*y) sage: sin(f) # equivalent to f.sin() sin(x*y) sage: sin(f).display() (x, y) ↦ sin(x*y) sage: sin(X.zero_function()) == X.zero_function() True sage: f = X.function(2-cos(x)^2+y) sage: g = X.function(-sin(x)^2+y) sage: (f+g).simplify() 2*y + 1
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f = X.function(x*y) sage: f.sin() sin(x*y) sage: sin(f) # equivalent to f.sin() sin(x*y)
- sinh()#
Hyperbolic sine of
self
.OUTPUT:
chart function \(\sinh(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.sinh() sinh(x*y) sage: sinh(f) # equivalent to f.sinh() sinh(x*y) sage: sinh(f).display() (x, y) ↦ sinh(x*y) sage: sinh(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.sinh() sinh(x*y) sage: sinh(f) # equivalent to f.sinh() sinh(x*y)
- sqrt()#
Square root of
self
.OUTPUT:
chart function \(\sqrt{f}\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x+y) sage: f.sqrt() sqrt(x + y) sage: sqrt(f) # equivalent to f.sqrt() sqrt(x + y) sage: sqrt(f).display() (x, y) ↦ sqrt(x + y) sage: sqrt(X.zero_function()).display() (x, y) ↦ 0
- tan()#
Tangent of
self
.OUTPUT:
chart function \(\tan(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.tan() sin(x*y)/cos(x*y) sage: tan(f) # equivalent to f.tan() sin(x*y)/cos(x*y) sage: tan(f).display() (x, y) ↦ sin(x*y)/cos(x*y) sage: tan(X.zero_function()) == X.zero_function() True
The same test with SymPy:
sage: M.set_calculus_method('sympy') sage: g = X.function(x*y) sage: g.tan() tan(x*y) sage: tan(g) # equivalent to g.tan() tan(x*y) sage: tan(g).display() (x, y) ↦ tan(x*y)
- tanh()#
Hyperbolic tangent of
self
.OUTPUT:
chart function \(\tanh(f)\), where \(f\) is the current chart function
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.function(x*y) sage: f.tanh() sinh(x*y)/cosh(x*y) sage: tanh(f) # equivalent to f.tanh() sinh(x*y)/cosh(x*y) sage: tanh(f).display() (x, y) ↦ sinh(x*y)/cosh(x*y) sage: tanh(X.zero_function()) == X.zero_function() True
The same tests with SymPy:
sage: X.calculus_method().set('sympy') sage: f.tanh() tanh(x*y) sage: tanh(f) # equivalent to f.tanh() tanh(x*y)
- class sage.manifolds.chart_func.ChartFunctionRing(chart)#
Bases:
sage.structure.parent.Parent
,sage.structure.unique_representation.UniqueRepresentation
Ring of all chart functions on a chart.
INPUT:
chart
– a coordinate chart, as an instance of classChart
EXAMPLES:
The ring of all chart functions w.r.t. to a chart:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: FR = X.function_ring(); FR Ring of chart functions on Chart (M, (x, y)) sage: type(FR) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category'> sage: FR.category() Category of commutative algebras over Symbolic Ring
Coercions by means of restrictions are implemented:
sage: FR_X = X.function_ring() sage: D = M.open_subset('D') sage: X_D = X.restrict(D, x^2+y^2<1) # open disk sage: FR_X_D = X_D.function_ring() sage: FR_X_D.has_coerce_map_from(FR_X) True
But only if the charts are compatible:
sage: Y.<t,z> = D.chart() sage: FR_Y = Y.function_ring() sage: FR_Y.has_coerce_map_from(FR_X) False
- Element#
alias of
ChartFunction
- is_field(proof=True)#
Return
False
asself
is not an integral domain.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: FR = X.function_ring() sage: FR.is_integral_domain() False sage: FR.is_field() False
- is_integral_domain(proof=True)#
Return
False
asself
is not an integral domain.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: FR = X.function_ring() sage: FR.is_integral_domain() False sage: FR.is_field() False
- one()#
Return the constant function \(1\) in
self
.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: FR = X.function_ring() sage: FR.one() 1 sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)) sage: X.<x,y> = M.chart() sage: X.function_ring().one() 1 + O(5^20)
- zero()#
Return the constant function \(0\) in
self
.EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: FR = X.function_ring() sage: FR.zero() 0 sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)) sage: X.<x,y> = M.chart() sage: X.function_ring().zero() 0
- class sage.manifolds.chart_func.MultiCoordFunction(chart, expressions)#
Bases:
sage.structure.sage_object.SageObject
,sage.structure.mutability.Mutability
Coordinate function to some Cartesian power of the base field.
If \(n\) and \(m\) are two positive integers and \((U, \varphi)\) is a chart on a topological manifold \(M\) of dimension \(n\) over a topological field \(K\), a multi-coordinate function associated to \((U, \varphi)\) is a map
\[\begin{split}\begin{array}{llcl} f:& V \subset K^n & \longrightarrow & K^m \\ & (x^1, \ldots, x^n) & \longmapsto & (f_1(x^1, \ldots, x^n), \ldots, f_m(x^1, \ldots, x^n)), \end{array}\end{split}\]where \(V\) is the codomain of \(\varphi\). In other words, \(f\) is a \(K^m\)-valued function of the coordinates associated to the chart \((U, \varphi)\). Each component \(f_i\) (\(1 \leq i \leq m\)) is a coordinate function and is therefore stored as a
ChartFunction
.INPUT:
chart
– the chart \((U, \varphi)\)expressions
– list (or tuple) of length \(m\) of elements to construct the coordinate functions \(f_i\) (\(1 \leq i \leq m\)); for symbolic coordinate functions, this must be symbolic expressions involving the chart coordinates, while for numerical coordinate functions, this must be data file names
EXAMPLES:
A function \(f: V \subset \RR^2 \longrightarrow \RR^3\):
sage: forget() # to clear the previous assumption on x sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y)); f Coordinate functions (x - y, x*y, cos(x)*e^y) on the Chart (M, (x, y)) sage: type(f) <class 'sage.manifolds.chart_func.MultiCoordFunction'> sage: f(x,y) (x - y, x*y, cos(x)*e^y) sage: latex(f) \left(x - y, x y, \cos\left(x\right) e^{y}\right)
Each real-valued function \(f_i\) (\(1 \leq i \leq m\)) composing \(f\) can be accessed via the square-bracket operator, by providing \(i-1\) as an argument:
sage: f[0] x - y sage: f[1] x*y sage: f[2] cos(x)*e^y
We can give a more verbose explanation of each function:
sage: f[0].display() (x, y) ↦ x - y
Each
f[i-1]
is an instance ofChartFunction
:sage: isinstance(f[0], sage.manifolds.chart_func.ChartFunction) True
A class
MultiCoordFunction
can represent a real-valued function (case \(m = 1\)), although one should rather employ the classChartFunction
for this purpose:sage: g = X.multifunction(x*y^2) sage: g(x,y) (x*y^2,)
Evaluating the functions at specified coordinates:
sage: f(1,2) (-1, 2, cos(1)*e^2) sage: var('a b') (a, b) sage: f(a,b) (a - b, a*b, cos(a)*e^b) sage: g(1,2) (4,)
- chart()#
Return the chart with respect to which
self
is defined.OUTPUT:
a
Chart
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y)) sage: f.chart() Chart (M, (x, y)) sage: f.chart() is X True
- expr(method=None)#
Return a tuple of data, the item no. \(i\) being sufficient to reconstruct the coordinate function no. \(i\).
In other words, if
f
is a multi-coordinate function, thenf.chart().multifunction(*(f.expr()))
results in a multi-coordinate function identical tof
.INPUT:
method
– string (default:None
): the calculus method which the returned expressions belong to; one of'SR'
: Sage’s default symbolic engine (Symbolic Ring)'sympy'
: SymPyNone
: the chart current calculus method is assumed
OUTPUT:
a tuple of the symbolic expressions of the chart functions composing
self
EXAMPLES:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y, cos(x)*exp(y)) sage: f.expr() (x - y, x*y, cos(x)*e^y) sage: type(f.expr()[0]) <class 'sage.symbolic.expression.Expression'>
A SymPy output:
sage: f.expr('sympy') (x - y, x*y, exp(y)*cos(x)) sage: type(f.expr('sympy')[0]) <class 'sympy.core.add.Add'>
One shall always have:
sage: f.chart().multifunction(*(f.expr())) == f True
- jacobian()#
Return the Jacobian matrix of the system of coordinate functions.
jacobian()
is a 2-dimensional array of size \(m \times n\), where \(m\) is the number of functions and \(n\) the number of coordinates, the generic element being \(J_{ij} = \frac{\partial f_i}{\partial x^j}\) with \(1 \leq i \leq m\) (row index) and \(1 \leq j \leq n\) (column index).OUTPUT:
Jacobian matrix as a 2-dimensional array
J
of coordinate functions withJ[i-1][j-1]
being \(J_{ij} = \frac{\partial f_i}{\partial x^j}\) for \(1 \leq i \leq m\) and \(1 \leq j \leq n\)
EXAMPLES:
Jacobian of a set of 3 functions of 2 coordinates:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y, y^3*cos(x)) sage: f.jacobian() [ 1 -1] [ y x] [ -y^3*sin(x) 3*y^2*cos(x)]
Each element of the result is a
chart function
:sage: type(f.jacobian()[2,0]) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'> sage: f.jacobian()[2,0].display() (x, y) ↦ -y^3*sin(x)
Test of the computation:
sage: [[f.jacobian()[i,j] == f[i].diff(j) for j in range(2)] for i in range(3)] [[True, True], [True, True], [True, True]]
Test with
start_index = 1
:sage: M = Manifold(2, 'M', structure='topological', start_index=1) sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y, y^3*cos(x)) sage: f.jacobian() [ 1 -1] [ y x] [ -y^3*sin(x) 3*y^2*cos(x)] sage: [[f.jacobian()[i,j] == f[i].diff(j+1) for j in range(2)] # note the j+1 ....: for i in range(3)] [[True, True], [True, True], [True, True]]
- jacobian_det()#
Return the Jacobian determinant of the system of functions.
The number \(m\) of coordinate functions must equal the number \(n\) of coordinates.
OUTPUT:
a
ChartFunction
representing the determinant
EXAMPLES:
Jacobian determinant of a set of 2 functions of 2 coordinates:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: f = X.multifunction(x-y, x*y) sage: f.jacobian_det() x + y
The output of
jacobian_det()
is an instance ofChartFunction
and can therefore be called on specific values of the coordinates, e.g. \((x,y) = (1,2)\):sage: type(f.jacobian_det()) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'> sage: f.jacobian_det().display() (x, y) ↦ x + y sage: f.jacobian_det()(1,2) 3
The result is cached:
sage: f.jacobian_det() is f.jacobian_det() True
We verify the determinant of the Jacobian:
sage: f.jacobian_det() == det(matrix([[f[i].diff(j).expr() for j in range(2)] ....: for i in range(2)])) True
An example using SymPy:
sage: M.set_calculus_method('sympy') sage: g = X.multifunction(x*y^3, e^x) sage: g.jacobian_det() -3*x*y**2*exp(x) sage: type(g.jacobian_det().expr()) <class 'sympy.core.mul.Mul'>
Jacobian determinant of a set of 3 functions of 3 coordinates:
sage: M = Manifold(3, 'M', structure='topological') sage: X.<x,y,z> = M.chart() sage: f = X.multifunction(x*y+z^2, z^2*x+y^2*z, (x*y*z)^3) sage: f.jacobian_det().display() (x, y, z) ↦ 6*x^3*y^5*z^3 - 3*x^4*y^3*z^4 - 12*x^2*y^4*z^5 + 6*x^3*y^2*z^6
We verify the determinant of the Jacobian:
sage: f.jacobian_det() == det(matrix([[f[i].diff(j).expr() for j in range(3)] ....: for i in range(3)])) True
- set_immutable()#
Set
self
and all chart functions ofself
immutable.EXAMPLES:
Declare a coordinate function immutable:
sage: M = Manifold(3, 'M', structure='topological') sage: X.<x,y,z> = M.chart() sage: f = X.multifunction(x+y+z, x*y*z) sage: f.is_immutable() False sage: f.set_immutable() sage: f.is_immutable() True
The chart functions are now immutable, too:
sage: f[0].parent() Ring of chart functions on Chart (M, (x, y, z)) sage: f[0].is_immutable() True