Miscellaneous generic functions#
A collection of functions implementing generic algorithms in arbitrary groups, including additive and multiplicative groups.
In all cases the group operation is specified by a parameter ‘operation’, which is a string either one of the set of multiplication_names or addition_names specified below, or ‘other’. In the latter case, the caller must provide an identity, inverse() and op() functions.
multiplication_names = ( 'multiplication', 'times', 'product', '*')
addition_names = ( 'addition', 'plus', 'sum', '+')
Also included are a generic function for computing multiples (or powers), and an iterator for general multiples and powers.
EXAMPLES:
Some examples in the multiplicative group of a finite field:
Discrete logs:
sage: K = GF(3^6,'b') sage: b = K.gen() sage: a = b^210 sage: discrete_log(a, b, K.order()-1) 210
Linear relation finder:
sage: F.<a> = GF(3^6,'a') sage: a.multiplicative_order().factor() 2^3 * 7 * 13 sage: b = a^7 sage: c = a^13 sage: linear_relation(b,c,'*') (13, 7) sage: b^13 == c^7 True
Orders of elements:
sage: from sage.groups.generic import order_from_multiple, order_from_bounds sage: k.<a> = GF(5^5) sage: b = a^4 sage: order_from_multiple(b,5^5-1,operation='*') 781 sage: order_from_bounds(b,(5^4,5^5),operation='*') 781
Some examples in the group of points of an elliptic curve over a finite field:
Discrete logs:
sage: F = GF(37^2,'a') sage: E = EllipticCurve(F,[1,1]) sage: F.<a> = GF(37^2,'a') sage: E = EllipticCurve(F,[1,1]) sage: P = E(25*a + 16 , 15*a + 7 ) sage: P.order() 672 sage: Q = 39*P; Q (36*a + 32 : 5*a + 12 : 1) sage: discrete_log(Q,P,P.order(),operation='+') 39
Linear relation finder:
sage: F.<a> = GF(3^6,'a') sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1]) sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2 , 0) sage: Q = E(2*a^3 + 2*a^2 + 2*a , a^3 + 2*a^2 + 1) sage: linear_relation(P,Q,'+') (1, 2) sage: P == 2*Q True
Orders of elements:
sage: from sage.groups.generic import order_from_multiple, order_from_bounds sage: k.<a> = GF(5^5) sage: E = EllipticCurve(k,[2,4]) sage: P = E(3*a^4 + 3*a , 2*a + 1 ) sage: M = E.cardinality(); M 3227 sage: plist = M.prime_factors() sage: order_from_multiple(P, M, plist, operation='+') 3227 sage: Q = E(0,2) sage: order_from_multiple(Q, M, plist, operation='+') 7 sage: order_from_bounds(Q, Hasse_bounds(5^5), operation='+') 7
- sage.groups.generic.bsgs(a, b, bounds, operation='*', identity=None, inverse=None, op=None)#
Totally generic discrete baby-step giant-step function.
Solves \(na=b\) (or \(a^n=b\)) with \(lb\le n\le ub\) where
bounds==(lb,ub)
, raising an error if no such \(n\) exists.\(a\) and \(b\) must be elements of some group with given identity, inverse of
x
given byinverse(x)
, and group operation onx
,y
byop(x,y)
.If operation is ‘*’ or ‘+’ then the other arguments are provided automatically; otherwise they must be provided by the caller.
INPUT:
a
- group elementb
- group elementbounds
- a 2-tuple of integers(lower,upper)
with0<=lower<=upper
operation
- string: ‘*’, ‘+’, ‘other’identity
- the identity element of the groupinverse()
- function of 1 argumentx
returning inverse ofx
op()
- function of 2 argumentsx
,y
returningx*y
in the group
OUTPUT:
An integer \(n\) such that \(a^n = b\) (or \(na = b\)). If no such \(n\) exists, this function raises a ValueError exception.
NOTE: This is a generalization of discrete logarithm. One situation where this version is useful is to find the order of an element in a group where we only have bounds on the group order (see the elliptic curve example below).
ALGORITHM: Baby step giant step. Time and space are soft \(O(\sqrt{n})\) where \(n\) is the difference between upper and lower bounds.
EXAMPLES:
sage: from sage.groups.generic import bsgs sage: b = Mod(2,37); a = b^20 sage: bsgs(b, a, (0,36)) 20 sage: p = next_prime(10^20) sage: a = Mod(2,p); b = a^(10^25) sage: bsgs(a, b, (10^25-10^6,10^25+10^6)) == 10^25 True sage: K = GF(3^6,'b') sage: a = K.gen() sage: b = a^210 sage: bsgs(a, b, (0,K.order()-1)) 210 sage: K.<z> = CyclotomicField(230) sage: w = z^500 sage: bsgs(z,w,(0,229)) 40
An additive example in an elliptic curve group:
sage: F.<a> = GF(37^5) sage: E = EllipticCurve(F, [1,1]) sage: P = E.lift_x(a); P (a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)
This will return a multiple of the order of P:
sage: bsgs(P,P.parent()(0),Hasse_bounds(F.order()),operation='+') 69327408
AUTHOR:
John Cremona (2008-03-15)
- sage.groups.generic.discrete_log(a, base, ord=None, bounds=None, operation='*', identity=None, inverse=None, op=None, algorithm='bsgs')#
Totally generic discrete log function.
INPUT:
a
- group elementbase
- group element (the base)ord
- integer (multiple of order of base, orNone
)bounds
- a priori bounds on the logoperation
- string: ‘*’, ‘+’, ‘other’identity
- the group’s identityinverse()
- function of 1 argumentx
returning inverse ofx
op()
- function of 2 argumentsx
,y
returningx*y
in the groupalgorithm
- string denoting what algorithm to use for prime-order logarithms: ‘bsgs’, ‘rho’, ‘lambda’
a
andbase
must be elements of some group with identity given by identity, inverse ofx
byinverse(x)
, and group operation onx
,y
byop(x,y)
.If operation is ‘*’ or ‘+’ then the other arguments are provided automatically; otherwise they must be provided by the caller.
OUTPUT: Returns an integer \(n\) such that \(b^n = a\) (or \(nb = a\)), assuming that
ord
is a multiple of the order of the base \(b\). Iford
is not specified, an attempt is made to compute it.If no such \(n\) exists, this function raises a ValueError exception.
Warning
If
x
has a log method, it is likely to be vastly faster than using this function. E.g., ifx
is an integer modulo \(n\), use its log method instead!ALGORITHM: Pohlig-Hellman, Baby step giant step, Pollard’s lambda/kangaroo, and Pollard’s rho.
EXAMPLES:
sage: b = Mod(2,37); a = b^20 sage: discrete_log(a, b) 20 sage: b = Mod(3,2017); a = b^20 sage: discrete_log(a, b, bounds=(10, 100)) 20 sage: K = GF(3^6,'b') sage: b = K.gen() sage: a = b^210 sage: discrete_log(a, b, K.order()-1) 210 sage: b = Mod(1,37); x = Mod(2,37) sage: discrete_log(x, b) Traceback (most recent call last): ... ValueError: no discrete log of 2 found to base 1 sage: b = Mod(1,997); x = Mod(2,997) sage: discrete_log(x, b) Traceback (most recent call last): ... ValueError: no discrete log of 2 found to base 1
See trac ticket #2356:
sage: F.<w> = GF(121) sage: v = w^120 sage: v.log(w) 0 sage: K.<z> = CyclotomicField(230) sage: w = z^50 sage: discrete_log(w,z) 50
An example where the order is infinite: note that we must give an upper bound here:
sage: K.<a> = QuadraticField(23) sage: eps = 5*a-24 # a fundamental unit sage: eps.multiplicative_order() +Infinity sage: eta = eps^100 sage: discrete_log(eta,eps,bounds=(0,1000)) 100
In this case we cannot detect negative powers:
sage: eta = eps^(-3) sage: discrete_log(eta,eps,bounds=(0,100)) Traceback (most recent call last): ... ValueError: no discrete log of -11515*a - 55224 found to base 5*a - 24
But we can invert the base (and negate the result) instead:
sage: - discrete_log(eta^-1,eps,bounds=(0,100)) -3
An additive example: elliptic curve DLOG:
sage: F = GF(37^2,'a') sage: E = EllipticCurve(F,[1,1]) sage: F.<a> = GF(37^2,'a') sage: E = EllipticCurve(F,[1,1]) sage: P = E(25*a + 16 , 15*a + 7 ) sage: P.order() 672 sage: Q = 39*P; Q (36*a + 32 : 5*a + 12 : 1) sage: discrete_log(Q,P,P.order(),operation='+') 39
An example of big smooth group:
sage: F.<a> = GF(2^63) sage: g = F.gen() sage: u = g**123456789 sage: discrete_log(u,g) 123456789
The above examples also work when the ‘rho’ and ‘lambda’ algorithms are used:
sage: b = Mod(2,37); a = b^20 sage: discrete_log(a, b, algorithm='rho') 20 sage: b = Mod(3,2017); a = b^20 sage: discrete_log(a, b, algorithm='lambda', bounds=(10, 100)) 20 sage: K = GF(3^6,'b') sage: b = K.gen() sage: a = b^210 sage: discrete_log(a, b, K.order()-1, algorithm='rho') 210 sage: b = Mod(1,37); x = Mod(2,37) sage: discrete_log(x, b, algorithm='lambda') Traceback (most recent call last): ... ValueError: no discrete log of 2 found to base 1 sage: b = Mod(1,997); x = Mod(2,997) sage: discrete_log(x, b, algorithm='rho') Traceback (most recent call last): ... ValueError: no discrete log of 2 found to base 1 sage: F=GF(37^2,'a') sage: E=EllipticCurve(F,[1,1]) sage: F.<a>=GF(37^2,'a') sage: E=EllipticCurve(F,[1,1]) sage: P=E(25*a + 16 , 15*a + 7 ) sage: P.order() 672 sage: Q=39*P; Q (36*a + 32 : 5*a + 12 : 1) sage: discrete_log(Q,P,P.order(),operation='+',algorithm='lambda') 39 sage: F.<a> = GF(2^63) sage: g = F.gen() sage: u = g**123456789 sage: discrete_log(u,g,algorithm='rho') 123456789
AUTHORS:
William Stein and David Joyner (2005-01-05)
John Cremona (2008-02-29) rewrite using
dict()
and make genericJulien Grijalva (2022-08-09) rewrite to make more generic, more algorithm options, and more effective use of bounds
- sage.groups.generic.discrete_log_generic(a, base, ord=None, bounds=None, operation='*', identity=None, inverse=None, op=None, algorithm='bsgs')#
Alias for
discrete_log
.
- sage.groups.generic.discrete_log_lambda(a, base, bounds, operation='*', identity=None, inverse=None, op=None, hash_function=<built-in function hash>)#
Pollard Lambda algorithm for computing discrete logarithms. It uses only a logarithmic amount of memory. It’s useful if you have bounds on the logarithm. If you are computing logarithms in a whole finite group, you should use Pollard Rho algorithm.
INPUT:
a – a group element
base – a group element
bounds – a couple (lb,ub) representing the range where we look for a logarithm
operation – string: ‘+’, ‘*’ or ‘other’
identity – the identity element of the group
inverse() – function of 1 argument
x
returning inverse ofx
op() – function of 2 arguments
x
,y
returningx*y
in the grouphash_function – having an efficient hash function is critical for this algorithm
OUTPUT: Returns an integer \(n\) such that \(a=base^n\) (or \(a=n*base\))
- ALGORITHM: Pollard Lambda, if bounds are (lb,ub) it has time complexity
O(sqrt(ub-lb)) and space complexity O(log(ub-lb))
EXAMPLES:
sage: F.<a> = GF(2^63) sage: discrete_log_lambda(a^1234567, a, (1200000,1250000)) 1234567 sage: F.<a> = GF(37^5) sage: E = EllipticCurve(F, [1,1]) sage: P = E.lift_x(a); P (a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)
This will return a multiple of the order of P:
sage: discrete_log_lambda(P.parent()(0), P, Hasse_bounds(F.order()), operation='+') 69327408 sage: K.<a> = GF(89**5) sage: hs = lambda x: hash(x) + 15 sage: discrete_log_lambda(a**(89**3 - 3), a, (89**2, 89**4), operation = '*', hash_function = hs) # long time (10s on sage.math, 2011) 704966
AUTHOR:
– Yann Laigle-Chapuy (2009-01-25)
- sage.groups.generic.discrete_log_rho(a, base, ord=None, operation='*', identity=None, inverse=None, op=None, hash_function=<built-in function hash>)#
Pollard Rho algorithm for computing discrete logarithm in cyclic group of prime order. If the group order is very small it falls back to the baby step giant step algorithm.
INPUT:
a
– a group elementbase
– a group elementord
– the order ofbase
orNone
, in this case we try to compute itoperation
– a string (default:'*'
) denoting whether we are in an additive group or a multiplicative oneidentity
- the group’s identityinverse()
- function of 1 argumentx
returning inverse ofx
op()
- function of 2 argumentsx
,y
returningx*y
in the grouphash_function
– having an efficient hash function is critical for this algorithm (see examples)
OUTPUT: an integer \(n\) such that \(a = base^n\) (or \(a = n*base\))
ALGORITHM: Pollard rho for discrete logarithm, adapted from the article of Edlyn Teske, ‘A space efficient algorithm for group structure computation’.
EXAMPLES:
sage: F.<a> = GF(2^13) sage: g = F.gen() sage: discrete_log_rho(g^1234, g) 1234 sage: F.<a> = GF(37^5) sage: E = EllipticCurve(F, [1,1]) sage: G = (3*31*2^4)*E.lift_x(a) sage: discrete_log_rho(12345*G, G, ord=46591, operation='+') 12345
It also works with matrices:
sage: A = matrix(GF(50021),[[10577,23999,28893],[14601,41019,30188],[3081,736,27092]]) sage: discrete_log_rho(A^1234567, A) 1234567
Beware, the order must be prime:
sage: I = IntegerModRing(171980) sage: discrete_log_rho(I(2), I(3)) Traceback (most recent call last): ... ValueError: for Pollard rho algorithm the order of the group must be prime
If it fails to find a suitable logarithm, it raises a
ValueError
:sage: I = IntegerModRing(171980) sage: discrete_log_rho(I(31002),I(15501)) Traceback (most recent call last): ... ValueError: Pollard rho algorithm failed to find a logarithm
The main limitation on the hash function is that we don’t want to have \(hash(x*y) = hash(x) + hash(y)\):
sage: I = IntegerModRing(next_prime(2^23)) sage: def test(): ....: try: ....: discrete_log_rho(I(123456),I(1),operation='+') ....: except Exception: ....: print("FAILURE") sage: test() # random failure FAILURE
If this happens, we can provide a better hash function:
sage: discrete_log_rho(I(123456),I(1),operation='+', hash_function=lambda x: hash(x*x)) 123456
AUTHOR:
Yann Laigle-Chapuy (2009-09-05)
- sage.groups.generic.linear_relation(P, Q, operation='+', identity=None, inverse=None, op=None)#
Function which solves the equation
a*P=m*Q
orP^a=Q^m
.Additive version: returns \((a,m)\) with minimal \(m>0\) such that \(aP=mQ\). Special case: if \(\left<P\right>\) and \(\left<Q\right>\) intersect only in \(\{0\}\) then \((a,m)=(0,n)\) where \(n\) is
Q.additive_order()
.Multiplicative version: returns \((a,m)\) with minimal \(m>0\) such that \(P^a=Q^m\). Special case: if \(\left<P\right>\) and \(\left<Q\right>\) intersect only in \(\{1\}\) then \((a,m)=(0,n)\) where \(n\) is
Q.multiplicative_order()
.ALGORITHM:
Uses the generic
bsgs()
function, and so works in general finite abelian groups.EXAMPLES:
An additive example (in an elliptic curve group):
sage: F.<a> = GF(3^6,'a') sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a,a^4 + a^3 + 2*a + 1]) sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2 , 0) sage: Q = E(2*a^3 + 2*a^2 + 2*a , a^3 + 2*a^2 + 1) sage: linear_relation(P,Q,'+') (1, 2) sage: P == 2*Q True
A multiplicative example (in a finite field’s multiplicative group):
sage: F.<a> = GF(3^6,'a') sage: a.multiplicative_order().factor() 2^3 * 7 * 13 sage: b = a^7 sage: c = a^13 sage: linear_relation(b,c,'*') (13, 7) sage: b^13==c^7 True
- sage.groups.generic.merge_points(P1, P2, operation='+', identity=None, inverse=None, op=None, check=True)#
Return a group element whose order is the lcm of the given elements.
INPUT:
P1
– a pair \((g_1,n_1)\) where \(g_1\) is a group element of order \(n_1\)P2
– a pair \((g_2,n_2)\) where \(g_2\) is a group element of order \(n_2\)operation
– string: ‘+’ (default ) or ‘*’ or other. If other, the following must be supplied:identity
: the identity element for the group;inverse()
: a function of one argument giving the inverse of a group element;op()
: a function of 2 arguments defining the groupbinary operation.
OUTPUT:
A pair \((g_3,n_3)\) where \(g_3\) has order \(n_3=\hbox{lcm}(n_1,n_2)\).
EXAMPLES:
sage: from sage.groups.generic import merge_points sage: F.<a>=GF(3^6,'a') sage: b = a^7 sage: c = a^13 sage: ob = (3^6-1)//7 sage: oc = (3^6-1)//13 sage: merge_points((b,ob),(c,oc),operation='*') (a^4 + 2*a^3 + 2*a^2, 728) sage: d,od = merge_points((b,ob),(c,oc),operation='*') sage: od == d.multiplicative_order() True sage: od == lcm(ob,oc) True sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a,a^4 + a^3 + 2*a + 1]) sage: P = E(2*a^5 + 2*a^4 + a^3 + 2 , a^4 + a^3 + a^2 + 2*a + 2) sage: P.order() 7 sage: Q = E(2*a^5 + 2*a^4 + 1 , a^5 + 2*a^3 + 2*a + 2 ) sage: Q.order() 4 sage: R,m = merge_points((P,7),(Q,4), operation='+') sage: R.order() == m True sage: m == lcm(7,4) True
- sage.groups.generic.multiple(a, n, operation='*', identity=None, inverse=None, op=None)#
Return either \(na\) or \(a^n\), where \(n\) is any integer and \(a\) is a Python object on which a group operation such as addition or multiplication is defined. Uses the standard binary algorithm.
INPUT: See the documentation for
discrete_logarithm()
.EXAMPLES:
sage: multiple(2,5) 32 sage: multiple(RealField()('2.5'),4) 39.0625000000000 sage: multiple(2,-3) 1/8 sage: multiple(2,100,'+') == 100*2 True sage: multiple(2,100) == 2**100 True sage: multiple(2,-100,) == 2**-100 True sage: R.<x>=ZZ[] sage: multiple(x,100) x^100 sage: multiple(x,100,'+') 100*x sage: multiple(x,-10) 1/x^10
Idempotence is detected, making the following fast:
sage: multiple(1,10^1000) 1 sage: E = EllipticCurve('389a1') sage: P = E(-1,1) sage: multiple(P,10,'+') (645656132358737542773209599489/22817025904944891235367494656 : 525532176124281192881231818644174845702936831/3446581505217248068297884384990762467229696 : 1) sage: multiple(P,-10,'+') (645656132358737542773209599489/22817025904944891235367494656 : -528978757629498440949529703029165608170166527/3446581505217248068297884384990762467229696 : 1)
- class sage.groups.generic.multiples(P, n, P0=None, indexed=False, operation='+', op=None)#
Bases:
object
Return an iterator which runs through
P0+i*P
fori
inrange(n)
.P
andP0
must be Sage objects in some group; if the operation is multiplication then the returned values are insteadP0*P**i
.EXAMPLES:
sage: list(multiples(1,10)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] sage: list(multiples(1,10,100)) [100, 101, 102, 103, 104, 105, 106, 107, 108, 109] sage: E = EllipticCurve('389a1') sage: P = E(-1,1) sage: for Q in multiples(P,5): print((Q, Q.height()/P.height())) ((0 : 1 : 0), 0.000000000000000) ((-1 : 1 : 1), 1.00000000000000) ((10/9 : -35/27 : 1), 4.00000000000000) ((26/361 : -5720/6859 : 1), 9.00000000000000) ((47503/16641 : 9862190/2146689 : 1), 16.0000000000000) sage: R.<x> = ZZ[] sage: list(multiples(x,5)) [0, x, 2*x, 3*x, 4*x] sage: list(multiples(x,5,operation='*')) [1, x, x^2, x^3, x^4] sage: list(multiples(x,5,indexed=True)) [(0, 0), (1, x), (2, 2*x), (3, 3*x), (4, 4*x)] sage: list(multiples(x,5,indexed=True,operation='*')) [(0, 1), (1, x), (2, x^2), (3, x^3), (4, x^4)] sage: for i,y in multiples(x,5,indexed=True): print("%s times %s = %s"%(i,x,y)) 0 times x = 0 1 times x = x 2 times x = 2*x 3 times x = 3*x 4 times x = 4*x sage: for i,n in multiples(3,5,indexed=True,operation='*'): print("3 to the power %s = %s" % (i,n)) 3 to the power 0 = 1 3 to the power 1 = 3 3 to the power 2 = 9 3 to the power 3 = 27 3 to the power 4 = 81
- next()#
Return the next item in this multiples iterator.
- sage.groups.generic.order_from_bounds(P, bounds, d=None, operation='+', identity=None, inverse=None, op=None)#
Generic function to find order of a group element, given only upper and lower bounds for a multiple of the order (e.g. bounds on the order of the group of which it is an element)
INPUT:
P
- a Sage object which is a group elementbounds
- a 2-tuple(lb,ub)
such thatm*P=0
(orP**m=1
) for somem
withlb<=m<=ub
.d
- (optional) a positive integer; onlym
which are multiples of this will be considered.operation
- string: ‘+’ (default ) or ‘*’ or other. If other, the following must be supplied:identity
: the identity element for the group;inverse()
: a function of one argument giving the inverse of a group element;op()
: a function of 2 arguments defining the group binary operation.
Note
Typically
lb
andub
will be bounds on the group order, and from previous calculation we know that the group order is divisible byd
.EXAMPLES:
sage: from sage.groups.generic import order_from_bounds sage: k.<a> = GF(5^5) sage: b = a^4 sage: order_from_bounds(b,(5^4,5^5),operation='*') 781 sage: E = EllipticCurve(k,[2,4]) sage: P = E(3*a^4 + 3*a , 2*a + 1 ) sage: bounds = Hasse_bounds(5^5) sage: Q = E(0,2) sage: order_from_bounds(Q, bounds, operation='+') 7 sage: order_from_bounds(P, bounds, 7, operation='+') 3227 sage: K.<z>=CyclotomicField(230) sage: w = z^50 sage: order_from_bounds(w,(200,250),operation='*') 23
- sage.groups.generic.order_from_multiple(P, m, plist=None, factorization=None, check=True, operation='+')#
Generic function to find order of a group element given a multiple of its order.
INPUT:
P
- a Sage object which is a group element;m
- a Sage integer which is a multiple of the order ofP
, i.e. we require thatm*P=0
(orP**m=1
);check
- a Boolean (default:True), indicating whether we check ifm
really is a multiple of the order;factorization
- the factorization ofm
, orNone
in which case this function will need to factorm
;plist
- a list of the prime factors ofm
, orNone
- kept for compatibility only, prefer the use offactorization
;operation
- string: ‘+’ (default) or ‘*’.
Note
It is more efficient for the caller to factor
m
and cache the factors for subsequent calls.EXAMPLES:
sage: from sage.groups.generic import order_from_multiple sage: k.<a> = GF(5^5) sage: b = a^4 sage: order_from_multiple(b,5^5-1,operation='*') 781 sage: E = EllipticCurve(k,[2,4]) sage: P = E(3*a^4 + 3*a , 2*a + 1 ) sage: M = E.cardinality(); M 3227 sage: F = M.factor() sage: order_from_multiple(P, M, factorization=F, operation='+') 3227 sage: Q = E(0,2) sage: order_from_multiple(Q, M, factorization=F, operation='+') 7 sage: K.<z> = CyclotomicField(230) sage: w = z^50 sage: order_from_multiple(w,230,operation='*') 23 sage: F = GF(2^1279,'a') sage: n = F.cardinality()-1 # Mersenne prime sage: order_from_multiple(F.random_element(),n,factorization=[(n,1)],operation='*') == n True sage: K.<a> = GF(3^60) sage: order_from_multiple(a, 3^60-1, operation='*', check=False) 42391158275216203514294433200
- sage.groups.generic.structure_description(G, latex=False)#
Return a string that tries to describe the structure of
G
.This methods wraps GAP’s
StructureDescription
method.For full details, including the form of the returned string and the algorithm to build it, see GAP’s documentation.
INPUT:
latex
– a boolean (default:False
). IfTrue
return a LaTeX formatted string.
OUTPUT:
string
Warning
From GAP’s documentation: The string returned by
StructureDescription
is not an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.EXAMPLES:
sage: G = CyclicPermutationGroup(6) sage: G.structure_description() 'C6' sage: G.structure_description(latex=True) 'C_{6}' sage: G2 = G.direct_product(G, maps=False) sage: LatexExpr(G2.structure_description(latex=True)) C_{6} \times C_{6}
This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:
sage: D3 = DihedralGroup(3) sage: D3.structure_description() 'S3'
We use the Sage notation for the degree of dihedral groups:
sage: D4 = DihedralGroup(4) sage: D4.structure_description() 'D4'
Works for finitely presented groups (trac ticket #17573):
sage: F.<x, y> = FreeGroup() sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1] sage: G.structure_description() 'C7'
And matrix groups (trac ticket #17573):
sage: groups.matrix.GL(4,2).structure_description() 'A8'