Number-theoretic functions#
- class sage.functions.transcendental.DickmanRho#
Bases:
sage.symbolic.function.BuiltinFunction
Dickman’s function is the continuous function satisfying the differential equation
\[x \rho'(x) + \rho(x-1) = 0\]with initial conditions \(\rho(x)=1\) for \(0 \le x \le 1\). It is useful in estimating the frequency of smooth numbers as asymptotically
\[\Psi(a, a^{1/s}) \sim a \rho(s)\]where \(\Psi(a,b)\) is the number of \(b\)-smooth numbers less than \(a\).
ALGORITHM:
Dickmans’s function is analytic on the interval \([n,n+1]\) for each integer \(n\). To evaluate at \(n+t, 0 \le t < 1\), a power series is recursively computed about \(n+1/2\) using the differential equation stated above. As high precision arithmetic may be needed for intermediate results the computed series are cached for later use.
Simple explicit formulas are used for the intervals [0,1] and [1,2].
EXAMPLES:
sage: dickman_rho(2) 0.306852819440055 sage: dickman_rho(10) 2.77017183772596e-11 sage: dickman_rho(10.00000000000000000000000000000000000000) 2.77017183772595898875812120063434232634e-11 sage: plot(log(dickman_rho(x)), (x, 0, 15)) Graphics object consisting of 1 graphics primitive
AUTHORS:
Robert Bradshaw (2008-09)
REFERENCES:
G. Marsaglia, A. Zaman, J. Marsaglia. “Numerical Solutions to some Classical Differential-Difference Equations.” Mathematics of Computation, Vol. 53, No. 187 (1989).
- approximate(x, parent=None)#
Approximate using de Bruijn’s formula
\[\rho(x) \sim \frac{exp(-x \xi + Ei(\xi))}{\sqrt{2\pi x}\xi}\]which is asymptotically equal to Dickman’s function, and is much faster to compute.
REFERENCES:
N. De Bruijn, “The Asymptotic behavior of a function occurring in the theory of primes.” J. Indian Math Soc. v 15. (1951)
EXAMPLES:
sage: dickman_rho.approximate(10) 2.41739196365564e-11 sage: dickman_rho(10) 2.77017183772596e-11 sage: dickman_rho.approximate(1000) 4.32938809066403e-3464
- power_series(n, abs_prec)#
This function returns the power series about \(n+1/2\) used to evaluate Dickman’s function. It is scaled such that the interval \([n,n+1]\) corresponds to x in \([-1,1]\).
INPUT:
n
- the lower endpoint of the interval for which this power series holdsabs_prec
- the absolute precision of the resulting power series
EXAMPLES:
sage: f = dickman_rho.power_series(2, 20); f -9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8 - 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4 - 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032 sage: f(-1), f(0), f(1) (0.30685, 0.13032, 0.048608) sage: dickman_rho(2), dickman_rho(2.5), dickman_rho(3) (0.306852819440055, 0.130319561832251, 0.0486083882911316)
- class sage.functions.transcendental.Function_HurwitzZeta#
- class sage.functions.transcendental.Function_stieltjes#
Bases:
sage.symbolic.function.GinacFunction
Stieltjes constant of index
n
.stieltjes(0)
is identical to the Euler-Mascheroni constant (sage.symbolic.constants.EulerGamma
). The Stieltjes constants are used in the series expansions of \(\zeta(s)\).INPUT:
n
- non-negative integer
EXAMPLES:
sage: _ = var('n') sage: stieltjes(n) stieltjes(n) sage: stieltjes(0) euler_gamma sage: stieltjes(2) stieltjes(2) sage: stieltjes(int(2)) stieltjes(2) sage: stieltjes(2).n(100) -0.0096903631928723184845303860352 sage: RR = RealField(200) sage: stieltjes(RR(2)) -0.0096903631928723184845303860352125293590658061013407498807014
It is possible to use the
hold
argument to prevent automatic evaluation:sage: stieltjes(0,hold=True) stieltjes(0) sage: latex(stieltjes(n)) \gamma_{n} sage: a = loads(dumps(stieltjes(n))) sage: a.operator() == stieltjes True sage: stieltjes(x)._sympy_() stieltjes(x) sage: stieltjes(x).subs(x==0) euler_gamma
- class sage.functions.transcendental.Function_zeta#
Bases:
sage.symbolic.function.GinacFunction
Riemann zeta function at s with s a real or complex number.
INPUT:
s
- real or complex number
If s is a real number the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.
EXAMPLES:
sage: zeta(x) zeta(x) sage: zeta(2) 1/6*pi^2 sage: zeta(2.) 1.64493406684823 sage: RR = RealField(200) sage: zeta(RR(2)) 1.6449340668482264364724151666460251892189499012067984377356 sage: zeta(I) zeta(I) sage: zeta(I).n() 0.00330022368532410 - 0.418155449141322*I sage: zeta(sqrt(2)) zeta(sqrt(2)) sage: zeta(sqrt(2)).n() # rel tol 1e-10 3.02073767948603
It is possible to use the
hold
argument to prevent automatic evaluation:sage: zeta(2,hold=True) zeta(2)
To then evaluate again, we currently must use Maxima via
sage.symbolic.expression.Expression.simplify()
:sage: a = zeta(2,hold=True); a.simplify() 1/6*pi^2
The Laurent expansion of \(\zeta(s)\) at \(s=1\) is implemented by means of the Stieltjes constants:
sage: s = SR('s') sage: zeta(s).series(s==1, 2) 1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
Generally, the Stieltjes constants occur in the Laurent expansion of \(\zeta\)-type singularities:
sage: zeta(2*s/(s+1)).series(s==1, 2) 2*(s - 1)^(-1) + (euler_gamma + 1) + (-1/2*stieltjes(1))*(s - 1) + Order((s - 1)^2)
- class sage.functions.transcendental.Function_zetaderiv#
Bases:
sage.symbolic.function.GinacFunction
Derivatives of the Riemann zeta function.
EXAMPLES:
sage: zetaderiv(1, x) zetaderiv(1, x) sage: zetaderiv(1, x).diff(x) zetaderiv(2, x) sage: var('n') n sage: zetaderiv(n,x) zetaderiv(n, x) sage: zetaderiv(1, 4).n() -0.0689112658961254 sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4) mpf('-0.068911265896125382')
- sage.functions.transcendental.hurwitz_zeta(s, x, **kwargs)#
The Hurwitz zeta function \(\zeta(s, x)\), where \(s\) and \(x\) are complex.
The Hurwitz zeta function is one of the many zeta functions. It is defined as
\[\zeta(s, x) = \sum_{k=0}^{\infty} (k + x)^{-s}.\]When \(x = 1\), this coincides with Riemann’s zeta function. The Dirichlet L-functions may be expressed as linear combinations of Hurwitz zeta functions.
EXAMPLES:
Symbolic evaluations:
sage: hurwitz_zeta(x, 1) zeta(x) sage: hurwitz_zeta(4, 3) 1/90*pi^4 - 17/16 sage: hurwitz_zeta(-4, x) -1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x sage: hurwitz_zeta(7, -1/2) 127*zeta(7) - 128 sage: hurwitz_zeta(-3, 1) 1/120
Numerical evaluations:
sage: hurwitz_zeta(3, 1/2).n() 8.41439832211716 sage: hurwitz_zeta(11/10, 1/2).n() 12.1038134956837 sage: hurwitz_zeta(3, x).series(x, 60).subs(x=0.5).n() 8.41439832211716 sage: hurwitz_zeta(3, 0.5) 8.41439832211716
REFERENCES:
- sage.functions.transcendental.zeta_symmetric(s)#
Completed function \(\xi(s)\) that satisfies \(\xi(s) = \xi(1-s)\) and has zeros at the same points as the Riemann zeta function.
INPUT:
s
- real or complex number
If s is a real number the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.
More precisely,
\[xi(s) = \gamma(s/2 + 1) * (s-1) * \pi^{-s/2} * \zeta(s).\]EXAMPLES:
sage: zeta_symmetric(0.7) 0.497580414651127 sage: zeta_symmetric(1-0.7) 0.497580414651127 sage: RR = RealField(200) sage: zeta_symmetric(RR(0.7)) 0.49758041465112690357779107525638385212657443284080589766062 sage: C.<i> = ComplexField() sage: zeta_symmetric(0.5 + i*14.0) 0.000201294444235258 + 1.49077798716757e-19*I sage: zeta_symmetric(0.5 + i*14.1) 0.0000489893483255687 + 4.40457132572236e-20*I sage: zeta_symmetric(0.5 + i*14.2) -0.0000868931282620101 + 7.11507675693612e-20*I
REFERENCE:
I copied the definition of xi from http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html