Plotting of Hyperplane Arrangements#
PLOT OPTIONS:
Beside the usual plot options (enter plot?
), the plot command for
hyperplane arrangements includes the following:
hyperplane_colors
– Color or list of colors, one for each hyperplane (default: equally spread range of hues).hyperplane_labels
– Boolean,'short'
,'long'
(default:False
). IfFalse
, no labels are shown; if ‘short’ or ‘long’, the hyperplanes are given short or long labels, respectively. IfTrue
, the hyperplanes are given long labels.label_colors
– Color or list of colors, one for each hyperplane (default: black).label_fontsize
– Size for hyperplane_label font (default:14
). This does not work for 3d plots.label_offsets
– Amount be which labels are offset from h.point() for each hyperplane h. The format is different for each dimension: if the hyperplanes have dimension 0, the offset can be a single number or a list of numbers, one for each hyperplane; if the hyperplanes have dimension 1, the offset can be a single 2-tuple, or a list of 2-tuples, one for each hyperplane; if the hyperplanes have dimension 2, the offset can be a single 3-tuple or a list of 3-tuples, one for each hyperplane. (Defaults: 0-dim:0.1
, 1-dim:(0,1)
, 2-dim:(0,0,0.2)
).hyperplane_legend
– Boolean,'short'
,'long'
(default:'long'
; in 3-d:False
). IfFalse
, no legend is shown; ifTrue
,'short'
, or'long'
, the legend is shown with the default, long, or short labeling, respectively. (For arrangements of lines or planes, only.)hyperplane_opacities
– A number or list of numbers, one for each hyperplane, between 0 and 1. Only applies to 3d plots.point_sizes
– Number or list of numbers, one for each hyperplane giving the sizes of points in a zero-dimensional arrangement (default:50
).ranges
– Range for the parameters or a list of ranges of parameters, one for each hyperplane, for the parametric plots of the hyperplanes. If a single positive number \(r\) is given forranges
, then all parameters run from -r to r. Otherwise, for a line in the plane, the range has the form[a,b]
(default:[-3,3]
), and for a plane in 3-space, the range has the form[[a,b],[c,d]]
(default:[[-3,3],[-3,3]]
). The ranges are centered aroundhyperplane_arrangement.point()
.
EXAMPLES:
sage: H3.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H3([(1,0,0), 0], [(0,0,1), 5])
sage: A.plot(hyperplane_opacities=0.5, hyperplane_labels=True, hyperplane_legend=False) # optional - sage.plot
Graphics3d Object
sage: c = H3([(1,0,0),0], [(0,0,1),5])
sage: c.plot(ranges=10) # optional - sage.plot
Graphics3d Object
sage: c.plot(ranges=[[9.5,10], [-3,3]]) # optional - sage.plot
Graphics3d Object
sage: c.plot(ranges=[[[9.5,10], [-3,3]], [[-6,6], [-5,5]]]) # optional - sage.plot
Graphics3d Object
sage: H2.<s,t> = HyperplaneArrangements(QQ)
sage: h = H2([(1,1),0], [(1,-1),0], [(0,1),2])
sage: h.plot(ranges=20) # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[-1, 10]) # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[[-1, 1], [-5, 5], [-1, 10]]) # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: a = hyperplane_arrangements.coordinate(3)
sage: opts = {'hyperplane_colors':['yellow', 'green', 'blue']}
sage: opts['hyperplane_labels'] = True
sage: opts['label_offsets'] = [(0,2,2), (2,0,2), (2,2,0)]
sage: opts['hyperplane_legend'] = False
sage: opts['hyperplane_opacities'] = 0.7
sage: a.plot(**opts) # optional - sage.plot
Graphics3d Object
sage: opts['hyperplane_labels'] = 'short'
sage: a.plot(**opts) # optional - sage.plot
Graphics3d Object
sage: H.<u> = HyperplaneArrangements(QQ)
sage: pts = H(3*u+4, 2*u+5, 7*u+1)
sage: pts.plot(hyperplane_colors=['yellow','black','blue']) # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: pts.plot(point_sizes=[50,100,200], hyperplane_colors='blue') # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: a = H(x, y+1, y+2)
sage: a.plot(hyperplane_labels=True,label_colors='blue',label_fontsize=18) # optional - sage.plot
Graphics3d Object
sage: a.plot(hyperplane_labels=True,label_colors=['red','green','black']) # optional - sage.plot
Graphics3d Object
- sage.geometry.hyperplane_arrangement.plot.legend_3d(hyperplane_arrangement, hyperplane_colors, length)#
Create plot of a 3d legend for an arrangement of planes in 3-space. The
length
parameter determines whether short or long labels are used in the legend.INPUT:
hyperplane_arrangement
– a hyperplane arrangementhyperplane_colors
– list of colorslength
– either'short'
or'long'
OUTPUT:
A graphics object.
EXAMPLES:
sage: a = hyperplane_arrangements.semiorder(3) sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d sage: legend_3d(a, list(colors.values())[:6],length='long') Graphics object consisting of 6 graphics primitives sage: b = hyperplane_arrangements.semiorder(4) sage: c = b.essentialization() sage: legend_3d(c, list(colors.values())[:12], length='long') Graphics object consisting of 12 graphics primitives sage: legend_3d(c, list(colors.values())[:12], length='short') Graphics object consisting of 12 graphics primitives sage: p = legend_3d(c, list(colors.values())[:12], length='short') sage: p.set_legend_options(ncol=4) sage: type(p) <class 'sage.plot.graphics.Graphics'>
- sage.geometry.hyperplane_arrangement.plot.plot(hyperplane_arrangement, **kwds)#
Return a plot of the hyperplane arrangement.
If the arrangement is in 4 dimensions but inessential, a plot of the essentialization is returned.
Note
This function is available as the
plot()
method of hyperplane arrangements. You should not call this function directly, only through the method.INPUT:
hyperplane_arrangement
– the hyperplane arrangement to plot**kwds
– plot options: seesage.geometry.hyperplane_arrangement.plot
.
OUTPUT:
A graphics object of the plot.
EXAMPLES:
sage: B = hyperplane_arrangements.semiorder(4) sage: B.plot() # optional - sage.plot Displaying the essentialization. Graphics3d Object
- sage.geometry.hyperplane_arrangement.plot.plot_hyperplane(hyperplane, **kwds)#
Return the plot of a single hyperplane.
INPUT:
**kwds
– plot options: see below
OUTPUT:
A graphics object of the plot.
Plot Options
Beside the usual plot options (enter
plot?
), the plot command for hyperplanes includes the following:hyperplane_label
– Boolean value or string (default:True
). IfTrue
, the hyperplane is labeled with its equation, if a string, it is labeled by that string, otherwise it is not labeled.label_color
– (Default:'black'
) Color for hyperplane_label.label_fontsize
– Size forhyperplane_label
font (default: 14) (does not work in 3d, yet).label_offset
– (Default: 0-dim: 0.1, 1-dim: (0,1), 2-dim: (0,0,0.2)) Amount by which label is offset fromhyperplane.point()
.point_size
– (Default: 50) Size of points in a zero-dimensional arrangement or of an arrangement over a finite field.ranges
– Range for the parameters for the parametric plot of the hyperplane. If a single positive numberr
is given for the value ofranges
, then the ranges for all parameters are set to \([-r, r]\). Otherwise, for a line in the plane,ranges
has the form[a, b]
(default: [-3,3]), and for a plane in 3-space, theranges
has the form[[a, b], [c, d]]
(default: [[-3,3],[-3,3]]). (The ranges are centered aroundhyperplane.point()
.)
EXAMPLES:
sage: H1.<x> = HyperplaneArrangements(QQ) sage: a = 3*x + 4 sage: a.plot() # indirect doctest # optional - sage.plot Graphics object consisting of 3 graphics primitives sage: a.plot(point_size=100,hyperplane_label='hello') # optional - sage.plot Graphics object consisting of 3 graphics primitives sage: H2.<x,y> = HyperplaneArrangements(QQ) sage: b = 3*x + 4*y + 5 sage: b.plot() # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: b.plot(ranges=(1,5),label_offset=(2,-1)) # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: opts = {'hyperplane_label':True, 'label_color':'green', ....: 'label_fontsize':24, 'label_offset':(0,1.5)} sage: b.plot(**opts) # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: H3.<x,y,z> = HyperplaneArrangements(QQ) sage: c = 2*x + 3*y + 4*z + 5 sage: c.plot() # optional - sage.plot Graphics3d Object sage: c.plot(label_offset=(1,0,1), color='green', label_color='red', frame=False) # optional - sage.plot Graphics3d Object sage: d = -3*x + 2*y + 2*z + 3 sage: d.plot(opacity=0.8) # optional - sage.plot Graphics3d Object sage: e = 4*x + 2*z + 3 sage: e.plot(ranges=[[-1,1],[0,8]], label_offset=(2,2,1), aspect_ratio=1) # optional - sage.plot Graphics3d Object