Punctured code#
Let \(C\) be a linear code. Let \(C_i\) be the set of all words of \(C\) with the \(i\)-th coordinate being removed. \(C_i\) is the punctured code of \(C\) on the \(i\)-th position.
- class sage.coding.punctured_code.PuncturedCode(C, positions)#
Bases:
sage.coding.linear_code.AbstractLinearCode
Representation of a punctured code.
C
– A linear codepositions
– the positions whereC
will be punctured. It can be either an integer if one need to puncture only one position, a list or a set of positions to puncture. If the same position is passed several times, it will be considered only once.
EXAMPLES:
sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: Cp Puncturing of [11, 5] linear code over GF(7) on position(s) [3] sage: Cp = codes.PuncturedCode(C, {3, 5}) sage: Cp Puncturing of [11, 5] linear code over GF(7) on position(s) [3, 5]
- dimension()#
Returns the dimension of
self
.EXAMPLES:
sage: set_random_seed(42) sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: Cp.dimension() 5
- encode(m, original_encode=False, encoder_name=None, **kwargs)#
Transforms an element of the message space into an element of the code.
INPUT:
m
– a vector of the message space of the code.original_encode
– (default:False
) if this is set toTrue
,m
will be encoded using an Encoder ofself
’soriginal_code()
. This allow to avoid the computation of a generator matrix forself
.encoder_name
– (default:None
) Name of the encoder which will be used to encodeword
. The default encoder ofself
will be used if default value is kept
OUTPUT:
an element of
self
EXAMPLES:
sage: M = matrix(GF(7), [[1, 0, 0, 0, 3, 4, 6], [0, 1, 0, 6, 1, 6, 4], [0, 0, 1, 5, 2, 2, 4]]) sage: C_original = LinearCode(M) sage: Cp = codes.PuncturedCode(C_original, 2) sage: m = vector(GF(7), [1, 3, 5]) sage: Cp.encode(m) (1, 3, 5, 5, 0, 2)
- original_code()#
Returns the linear code which was punctured to get
self
.EXAMPLES:
sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: Cp.original_code() [11, 5] linear code over GF(7)
- punctured_positions()#
Returns the list of positions which were punctured on the original code.
EXAMPLES:
sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: Cp.punctured_positions() {3}
- random_element(*args, **kwds)#
Returns a random codeword of
self
.This method does not trigger the computation of
self
’ssage.coding.linear_code_no_metric.generator_matrix()
.INPUT:
agrs
,kwds
- extra positional arguments passed tosage.modules.free_module.random_element()
.
EXAMPLES:
sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: Cp.random_element() in Cp True
- structured_representation()#
Returns
self
as a structured code object.If
self
has a specific structured representation (e.g. a punctured GRS code is a GRS code too), it will return this representation, else it returns asage.coding.linear_code.LinearCode
.EXAMPLES:
We consider a GRS code:
sage: C_grs = codes.GeneralizedReedSolomonCode(GF(59).list()[:40], 12)
A punctured GRS code is still a GRS code:
sage: Cp_grs = codes.PuncturedCode(C_grs, 3) sage: Cp_grs.structured_representation() [39, 12, 28] Reed-Solomon Code over GF(59)
Another example with structureless linear codes:
sage: set_random_seed(42) sage: C_lin = codes.random_linear_code(GF(2), 10, 5) sage: Cp_lin = codes.PuncturedCode(C_lin, 2) sage: Cp_lin.structured_representation() [9, 5] linear code over GF(2)
- class sage.coding.punctured_code.PuncturedCodeOriginalCodeDecoder(code, strategy=None, original_decoder=None, **kwargs)#
Bases:
sage.coding.decoder.Decoder
Decoder decoding through a decoder over the original code of its punctured code.
INPUT:
code
– The associated code of this encoderstrategy
– (default:None
) the strategy used to decode. The available strategies are:'error-erasure'
– uses an error-erasure decoder over the original code if available,fails otherwise.
'random-values'
– fills the punctured positions with random elementsin
code
’s base field and tries to decode using the default decoder of the original code
'try-all'
– fills the punctured positions with every possible combination ofsymbols until decoding succeeds, or until every combination have been tried
None
– useserror-erasure
if an error-erasure decoder is available,switch to
random-values
behaviour otherwise
original_decoder
– (default:None
) the decoder that will be used over the original code. It has to be a decoder object over the original code. This argument takes precedence overstrategy
: if bothoriginal_decoder
andstrategy
are filled,self
will use theoriginal_decoder
to decode over the original code. Iforiginal_decoder
is set toNone
, it will use the decoder picked bystrategy
.**kwargs
– all extra arguments are forwarded to original code’s decoderEXAMPLES:
sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp) Decoder of Puncturing of [15, 7, 9] Reed-Solomon Code over GF(16) on position(s) [3] through Error-Erasure decoder for [15, 7, 9] Reed-Solomon Code over GF(16)
As seen above, if all optional are left blank, and if an error-erasure decoder is available, it will be chosen as the original decoder. Now, if one forces
strategy `` to ``'try-all'
or'random-values'
, the default decoder of the original code will be chosen, even if an error-erasure is available:sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: D = codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp, strategy="try-all") sage: "error-erasure" in D.decoder_type() False
And if one fills
original_decoder
andstrategy
fields with contradictory elements, theoriginal_decoder
takes precedence:sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: Dor = C.decoder("Gao") sage: D = codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp, original_decoder = Dor, strategy="error-erasure") sage: D.original_decoder() == Dor True
- decode_to_code(y)#
Decodes
y
to an element insage.coding.decoder.Decoder.code()
.EXAMPLES:
sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: D = codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp) sage: c = Cp.random_element() sage: Chan = channels.StaticErrorRateChannel(Cp.ambient_space(), 3) sage: y = Chan(c) sage: y in Cp False sage: D.decode_to_code(y) == c True
- decoding_radius(number_erasures=None)#
Returns maximal number of errors that
self
can decode.EXAMPLES:
sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: D = codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp) sage: D.decoding_radius(2) 2
- original_decoder()#
Returns the decoder over the original code that will be used to decode words of
sage.coding.decoder.Decoder.code()
.EXAMPLES:
sage: C = codes.GeneralizedReedSolomonCode(GF(16, 'a').list()[:15], 7) sage: Cp = codes.PuncturedCode(C, 3) sage: D = codes.decoders.PuncturedCodeOriginalCodeDecoder(Cp) sage: D.original_decoder() Error-Erasure decoder for [15, 7, 9] Reed-Solomon Code over GF(16)
- class sage.coding.punctured_code.PuncturedCodePuncturedMatrixEncoder(code)#
Bases:
sage.coding.encoder.Encoder
Encoder using original code generator matrix to compute the punctured code’s one.
INPUT:
code
– The associated code of this encoder.
EXAMPLES:
sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: E = codes.encoders.PuncturedCodePuncturedMatrixEncoder(Cp) sage: E Punctured matrix-based encoder for the Puncturing of [11, 5] linear code over GF(7) on position(s) [3]
- generator_matrix()#
Returns a generator matrix of the associated code of
self
.EXAMPLES:
sage: set_random_seed(10) sage: C = codes.random_linear_code(GF(7), 11, 5) sage: Cp = codes.PuncturedCode(C, 3) sage: E = codes.encoders.PuncturedCodePuncturedMatrixEncoder(Cp) sage: E.generator_matrix() [1 0 0 0 0 5 2 6 0 6] [0 1 0 0 0 5 2 2 1 1] [0 0 1 0 0 6 2 4 0 4] [0 0 0 1 0 0 6 3 3 3] [0 0 0 0 1 0 1 3 4 3]