Finite dimensional modules with basis#
- class sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis(base_category)#
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
The category of finite dimensional modules with a distinguished basis
EXAMPLES:
sage: C = FiniteDimensionalModulesWithBasis(ZZ); C Category of finite dimensional modules with basis over Integer Ring sage: sorted(C.super_categories(), key=str) [Category of finite dimensional modules over Integer Ring, Category of modules with basis over Integer Ring] sage: C is Modules(ZZ).WithBasis().FiniteDimensional() True
- class ElementMethods#
Bases:
object
- dense_coefficient_list(order=None)#
Return a list of all coefficients of
self
.By default, this list is ordered in the same way as the indexing set of the basis of the parent of
self
.INPUT:
order
– (optional) an ordering of the basis indexing set
EXAMPLES:
sage: v = vector([0, -1, -3]) sage: v.dense_coefficient_list() [0, -1, -3] sage: v.dense_coefficient_list([2,1,0]) [-3, -1, 0] sage: sorted(v.coefficients()) [-3, -1]
- class MorphismMethods#
Bases:
object
- image()#
Return the image of
self
as a submodule of the codomain.EXAMPLES:
sage: SGA = SymmetricGroupAlgebra(QQ, 3) sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA) sage: f.image() Free module generated by {0, 1, 2} over Rational Field
- image_basis()#
Return a basis for the image of
self
in echelon form.EXAMPLES:
sage: SGA = SymmetricGroupAlgebra(QQ, 3) sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA) sage: f.image_basis() ([1, 2, 3], [2, 3, 1], [3, 1, 2])
- kernel()#
Return the kernel of
self
as a submodule of the domain.EXAMPLES:
sage: SGA = SymmetricGroupAlgebra(QQ, 3) sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA) sage: K = f.kernel() sage: K Free module generated by {0, 1, 2} over Rational Field sage: K.ambient() Symmetric group algebra of order 3 over Rational Field
- kernel_basis()#
Return a basis of the kernel of
self
in echelon form.EXAMPLES:
sage: SGA = SymmetricGroupAlgebra(QQ, 3) sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA) sage: f.kernel_basis() ([1, 2, 3] - [3, 2, 1], [1, 3, 2] - [3, 2, 1], [2, 1, 3] - [3, 2, 1])
- matrix(base_ring=None, side='left')#
Return the matrix of this morphism in the distinguished bases of the domain and codomain.
INPUT:
base_ring
– a ring (default:None
, meaning the base ring of the codomain)side
– “left” or “right” (default: “left”)
If
side
is “left”, this morphism is considered as acting on the left; i.e. each column of the matrix represents the image of an element of the basis of the domain.The order of the rows and columns matches with the order in which the bases are enumerated.
See also
Modules.WithBasis.ParentMethods.module_morphism()
EXAMPLES:
sage: X = CombinatorialFreeModule(ZZ, [1,2]); x = X.basis() sage: Y = CombinatorialFreeModule(ZZ, [3,4]); y = Y.basis() sage: phi = X.module_morphism(on_basis = {1: y[3] + 3*y[4], 2: 2*y[3] + 5*y[4]}.__getitem__, ....: codomain = Y) sage: phi.matrix() [1 2] [3 5] sage: phi.matrix(side="right") [1 3] [2 5] sage: phi.matrix().parent() Full MatrixSpace of 2 by 2 dense matrices over Integer Ring sage: phi.matrix(QQ).parent() Full MatrixSpace of 2 by 2 dense matrices over Rational Field
The resulting matrix is immutable:
sage: phi.matrix().is_mutable() False
The zero morphism has a zero matrix:
sage: Hom(X,Y).zero().matrix() [0 0] [0 0]
Todo
Add support for morphisms where the codomain has a different base ring than the domain:
sage: Y = CombinatorialFreeModule(QQ, [3,4]); y = Y.basis() sage: phi = X.module_morphism(on_basis = {1: y[3] + 3*y[4], 2: 2*y[3] + 5/2*y[4]}.__getitem__, ....: codomain = Y) sage: phi.matrix().parent() # todo: not implemented Full MatrixSpace of 2 by 2 dense matrices over Rational Field
This currently does not work because, in this case, the morphism is just in the category of commutative additive groups (i.e. the intersection of the categories of modules over \(\ZZ\) and over \(\QQ\)):
sage: phi.parent().homset_category() Category of commutative additive semigroups sage: phi.parent().homset_category() # todo: not implemented Category of finite dimensional modules with basis over Integer Ring
- class ParentMethods#
Bases:
object
- annihilator(S, action=<built-in function mul>, side='right', category=None)#
Return the annihilator of a finite set.
INPUT:
S
– a finite setaction
– a function (default:operator.mul
)side
– ‘left’ or ‘right’ (default: ‘right’)category
– a category
Assumptions:
action
takes elements ofself
as first argument and elements ofS
as second argument;The codomain is any vector space, and
action
is linear on its first argument; typically it is bilinear;If
side
is ‘left’, this is reversed.
OUTPUT:
The subspace of the elements \(x\) of
self
such thataction(x,s) = 0
for all \(s\in S\). Ifside
is ‘left’ replace the above equation byaction(s,x) = 0
.If
self
is a ring,action
an action ofself
on a module \(M\) and \(S\) is a subset of \(M\), we recover the Wikipedia article Annihilator_%28ring_theory%29. Similarly this can be used to compute torsion or orthogonals.See also
annihilator_basis()
for lots of examples.EXAMPLES:
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: x,y,a,b = F.basis() sage: A = F.annihilator([a + 3*b + 2*y]); A Free module generated by {0} over Rational Field sage: [b.lift() for b in A.basis()] [-1/2*a - 3/2*b + x]
The category can be used to specify other properties of this subspace, like that this is a subalgebra:
sage: center = F.annihilator(F.basis(), F.bracket, ....: category=Algebras(QQ).Subobjects()) sage: (e,) = center.basis() sage: e.lift() x + y sage: e * e == e True
Taking annihilator is order reversing for inclusion:
sage: A = F.annihilator([]); A .rename("A") sage: Ax = F.annihilator([x]); Ax .rename("Ax") sage: Ay = F.annihilator([y]); Ay .rename("Ay") sage: Axy = F.annihilator([x,y]); Axy.rename("Axy") sage: P = Poset(([A, Ax, Ay, Axy], attrcall("is_submodule"))) sage: sorted(P.cover_relations(), key=str) [[Ax, A], [Axy, Ax], [Axy, Ay], [Ay, A]]
- annihilator_basis(S, action=<built-in function mul>, side='right')#
Return a basis of the annihilator of a finite set of elements.
INPUT:
S
– a finite set of objectsaction
– a function (default:operator.mul
)side
– ‘left’ or ‘right’ (default: ‘right’): on which side ofself
the elements of \(S\) acts.
See
annihilator()
for the assumptions and definition of the annihilator.EXAMPLES:
By default, the action is the standard \(*\) operation. So our first example is about an algebra:
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: x,y,a,b = F.basis()
In this algebra, multiplication on the right by \(x\) annihilates all basis elements but \(x\):
sage: x*x, y*x, a*x, b*x (x, 0, 0, 0)
So the annihilator is the subspace spanned by \(y\), \(a\), and \(b\):
sage: F.annihilator_basis([x]) (y, a, b)
The same holds for \(a\) and \(b\):
sage: x*a, y*a, a*a, b*a (a, 0, 0, 0) sage: F.annihilator_basis([a]) (y, a, b)
On the other hand, \(y\) annihilates only \(x\):
sage: F.annihilator_basis([y]) (x,)
Here is a non trivial annihilator:
sage: F.annihilator_basis([a + 3*b + 2*y]) (-1/2*a - 3/2*b + x,)
Let’s check it:
sage: (-1/2*a - 3/2*b + x) * (a + 3*b + 2*y) 0
Doing the same calculations on the left exchanges the roles of \(x\) and \(y\):
sage: F.annihilator_basis([y], side="left") (x, a, b) sage: F.annihilator_basis([a], side="left") (x, a, b) sage: F.annihilator_basis([b], side="left") (x, a, b) sage: F.annihilator_basis([x], side="left") (y,) sage: F.annihilator_basis([a+3*b+2*x], side="left") (-1/2*a - 3/2*b + y,)
By specifying an inner product, this method can be used to compute the orthogonal of a subspace:
sage: x,y,a,b = F.basis() sage: def scalar(u,v): return vector([sum(u[i]*v[i] for i in F.basis().keys())]) sage: F.annihilator_basis([x+y, a+b], scalar) (x - y, a - b)
By specifying the standard Lie bracket as action, one can compute the commutator of a subspace of \(F\):
sage: F.annihilator_basis([a+b], action=F.bracket) (x + y, a, b)
In particular one can compute a basis of the center of the algebra. In our example, it is reduced to the identity:
sage: F.annihilator_basis(F.algebra_generators(), action=F.bracket) (x + y,)
But see also
FiniteDimensionalAlgebrasWithBasis.ParentMethods.center_basis()
.
- echelon_form(elements, row_reduced=False, order=None)#
Return a basis in echelon form of the subspace spanned by a finite set of elements.
INPUT:
elements
– a list or finite iterable of elements ofself
row_reduced
– (default:False
) whether to compute the basis for the row reduced echelon formorder
– (optional) either something that can be converted into a tuple or a key function
OUTPUT:
A list of elements of
self
whose expressions as vectors form a matrix in echelon form. Ifbase_ring
is specified, then the calculation is achieved in this base ring.EXAMPLES:
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x") sage: x = X.basis() sage: V = X.echelon_form([x[0]-x[1], x[0]-x[2],x[1]-x[2]]); V [x[0] - x[2], x[1] - x[2]] sage: matrix(list(map(vector, V))) [ 1 0 -1] [ 0 1 -1]
sage: F = CombinatorialFreeModule(ZZ, [1,2,3,4]) sage: B = F.basis() sage: elements = [B[1]-17*B[2]+6*B[3], B[1]-17*B[2]+B[4]] sage: F.echelon_form(elements) [B[1] - 17*B[2] + B[4], 6*B[3] - B[4]]
sage: F = CombinatorialFreeModule(QQ, ['a','b','c']) sage: a,b,c = F.basis() sage: F.echelon_form([8*a+b+10*c, -3*a+b-c, a-b-c]) [B['a'] + B['c'], B['b'] + 2*B['c']]
sage: R.<x,y> = QQ[] sage: C = CombinatorialFreeModule(R, range(3), prefix='x') sage: x = C.basis() sage: C.echelon_form([x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]) [x[0] - x[2], x[1] - x[2]]
sage: M = MatrixSpace(QQ, 3, 3) sage: A = M([[0, 0, 2], [0, 0, 0], [0, 0, 0]]) sage: M.echelon_form([A, A]) [ [0 0 1] [0 0 0] [0 0 0] ]
- from_vector(vector, order=None, coerce=True)#
Build an element of
self
from a vector.EXAMPLES:
sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]]) sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]]) sage: A = algebras.FiniteDimensional(QQ, [p_mult, q_mult, matrix(QQ,3,3)], ....: 'p,q,z') sage: A.from_vector(vector([1,0,2])) p + 2*z
- gens()#
Return the generators of
self
.OUTPUT:
A tuple containing the basis elements of
self
.EXAMPLES:
sage: F = CombinatorialFreeModule(ZZ, ['a', 'b', 'c']) sage: F.gens() (B['a'], B['b'], B['c'])
- invariant_module(S, action=<built-in function mul>, action_on_basis=None, side='left', **kwargs)#
Return the submodule of
self
invariant under the action ofS
.For a semigroup \(S\) acting on a module \(M\), the invariant submodule is given by
\[M^S = \{m \in M : s \cdot m = m,\, \forall s \in S\}.\]INPUT:
S
– a finitely-generated semigroupaction
– a function (default:operator.mul
)side
–'left'
or'right'
(default:'right'
); which side ofself
the elements ofS
actsaction_on_basis
– (optional) define the action ofS
on the basis ofself
OUTPUT:
EXAMPLES:
We build the invariant module of the permutation representation of the symmetric group:
sage: G = SymmetricGroup(3); G.rename('S3') sage: M = FreeModule(ZZ, [1,2,3], prefix='M'); M.rename('M') sage: action = lambda g, x: M.term(g(x)) sage: I = M.invariant_module(G, action_on_basis=action); I (S3)-invariant submodule of M sage: I.basis() Finite family {0: B[0]} sage: [I.lift(b) for b in I.basis()] [M[1] + M[2] + M[3]] sage: G.rename(); M.rename() # reset the names
We can construct the invariant module of any module that has an action of
S
. In this example, we consider the dihedral group \(G = D_4\) and the subgroup \(H < G\) of all rotations. We construct the \(H\)-invariant module of the group algebra \(\QQ[G]\):sage: G = groups.permutation.Dihedral(4) sage: H = G.subgroup(G.gen(0)) sage: H Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation group) sage: H.cardinality() 4 sage: A = G.algebra(QQ) sage: I = A.invariant_module(H) sage: [I.lift(b) for b in I.basis()] [() + (1,2,3,4) + (1,3)(2,4) + (1,4,3,2), (2,4) + (1,2)(3,4) + (1,3) + (1,4)(2,3)] sage: all(h * I.lift(b) == I.lift(b) for b in I.basis() for h in H) True
- twisted_invariant_module(G, chi, action=<built-in function mul>, action_on_basis=None, side='left', **kwargs)#
Create the isotypic component of the action of
G
onself
with irreducible character given bychi
.See also
INPUT:
G
– a finitely-generated groupchi
– a list/tuple of character values or an instance ofClassFunction_gap
action
– a function (default:operator.mul
)action_on_basis
– (optional) define the action ofg
on the basis ofself
side
–'left'
or'right'
(default:'right'
); which side ofself
the elements ofS
acts
OUTPUT:
EXAMPLES:
sage: M = CombinatorialFreeModule(QQ, [1,2,3]) sage: G = SymmetricGroup(3) sage: def action(g,x): return(M.term(g(x))) # permute coordinates sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action) sage: import __main__; __main__.action = action sage: TestSuite(T).run()
- class TensorProducts(category, *args)#
Bases:
sage.categories.tensor.TensorProductsCategory
- extra_super_categories()#
Implement the fact that a (finite) tensor product of finite dimensional modules is a finite dimensional module.
EXAMPLES:
sage: ModulesWithBasis(ZZ).FiniteDimensional().TensorProducts().extra_super_categories() [Category of finite dimensional modules with basis over Integer Ring] sage: ModulesWithBasis(ZZ).FiniteDimensional().TensorProducts().FiniteDimensional() Category of tensor products of finite dimensional modules with basis over Integer Ring