Conversion of symbolic expressions to other types#
This module provides routines for converting new symbolic expressions
to other types. Primarily, it provides a class Converter
which will walk the expression tree and make calls to methods
overridden by subclasses.
- class sage.symbolic.expression_conversions.AlgebraicConverter(field)#
Bases:
sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter sage: a = AlgebraicConverter(QQbar) sage: a.field Algebraic Field sage: a.reciprocal_trig_functions['cot'] tan
- arithmetic(ex, operator)#
Convert a symbolic expression to an algebraic number.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter sage: f = 2^(1/2) sage: a = AlgebraicConverter(QQbar) sage: a.arithmetic(f, f.operator()) 1.414213562373095?
- composition(ex, operator)#
Coerce to an algebraic number.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter sage: a = AlgebraicConverter(QQbar) sage: a.composition(exp(I*pi/3, hold=True), exp) 0.500000000000000? + 0.866025403784439?*I sage: a.composition(sin(pi/7), sin) 0.4338837391175581? + 0.?e-18*I
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter sage: a = AlgebraicConverter(QQbar) sage: f = SR(2) sage: a.pyobject(f, f.pyobject()) 2 sage: _.parent() Algebraic Field
- class sage.symbolic.expression_conversions.Converter(use_fake_div=False)#
Bases:
object
If use_fake_div is set to True, then the converter will try to replace expressions whose operator is operator.mul with the corresponding expression whose operator is operator.truediv.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import Converter sage: c = Converter(use_fake_div=True) sage: c.use_fake_div True
- arithmetic(ex, operator)#
The input to this method is a symbolic expression and the infix operator corresponding to that expression. Typically, one will convert all of the arguments and then perform the operation afterward.
- composition(ex, operator)#
The input to this method is a symbolic expression and its operator. This method will get called when you have a symbolic function application.
- derivative(ex, operator)#
The input to this method is a symbolic expression which corresponds to a relation.
- get_fake_div(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import Converter sage: c = Converter(use_fake_div=True) sage: c.get_fake_div(sin(x)/x) FakeExpression([sin(x), x], <built-in function truediv>) sage: c.get_fake_div(-1*sin(x)) FakeExpression([sin(x)], <built-in function neg>) sage: c.get_fake_div(-x) FakeExpression([x], <built-in function neg>) sage: c.get_fake_div((2*x^3+2*x-1)/((x-2)*(x+1))) FakeExpression([2*x^3 + 2*x - 1, FakeExpression([x + 1, x - 2], <built-in function mul>)], <built-in function truediv>)
Check if trac ticket #8056 is fixed, i.e., if numerator is 1.:
sage: c.get_fake_div(1/pi/x) FakeExpression([1, FakeExpression([pi, x], <built-in function mul>)], <built-in function truediv>)
- pyobject(ex, obj)#
The input to this method is the result of calling
pyobject()
on a symbolic expression.Note
Note that if a constant such as
pi
is encountered in the expression tree, its corresponding pyobject which is an instance ofsage.symbolic.constants.Pi
will be passed into this method. One cannot do arithmetic using such an object.
- relation(ex, operator)#
The input to this method is a symbolic expression which corresponds to a relation.
- symbol(ex)#
The input to this method is a symbolic expression which corresponds to a single variable. For example, this method could be used to return a generator for a polynomial ring.
- class sage.symbolic.expression_conversions.DeMoivre(ex, force=False)#
Bases:
sage.symbolic.expression_conversions.ExpressionTreeWalker
A class that walks a symbolic expression tree and replaces occurences of complex exponentials (optionally, all exponentials) by their respective trigonometric expressions.
INPUT:
force
– boolean (default:False
); replace \(\exp(x)\) with \(\cosh(x) + \sinh(x)\)
EXAMPLES:
sage: a, b = SR.var("a, b") sage: from sage.symbolic.expression_conversions import DeMoivre sage: d = DeMoivre(e^a) sage: d(e^(a+I*b)) (cos(b) + I*sin(b))*e^a
- composition(ex, op)#
Return the composition of
self
withex
byop
.EXAMPLES:
sage: x, a, b = SR.var('x, a, b') sage: from sage.symbolic.expression_conversions import DeMoivre sage: p = exp(x) sage: s = DeMoivre(p) sage: q = exp(a+I*b) sage: s.composition(q, q.operator()) (cos(b) + I*sin(b))*e^a
- class sage.symbolic.expression_conversions.Exponentialize(ex)#
Bases:
sage.symbolic.expression_conversions.ExpressionTreeWalker
A class that walks a symbolic expression tree and replace circular and hyperbolic functions by their respective exponential expressions.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import Exponentialize sage: d = Exponentialize(sin(x)) sage: d(sin(x)) -1/2*I*e^(I*x) + 1/2*I*e^(-I*x) sage: d(cosh(x)) 1/2*e^(-x) + 1/2*e^x
- Integer#
alias of
sage.rings.integer.Integer
- composition(ex, op)#
Return the composition of
self
withex
byop
.EXAMPLES:
sage: x = SR.var("x") sage: from sage.symbolic.expression_conversions import Exponentialize sage: p = x sage: s = Exponentialize(p) sage: q = sin(x) sage: s.composition(q, q.operator()) -1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
- function(s, **kwds)#
Create a formal symbolic function with the name s.
INPUT:
nargs=0
- number of arguments the function accepts, defaults to variable number of arguments, or 0latex_name
- name used when printing in latex modeconversions
- a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversioneval_func
- method used for automatic evaluationevalf_func
- method used for numeric evaluationevalf_params_first
- bool to indicate if parameters should be evaluated numerically before calling the custom evalf functionconjugate_func
- method used for complex conjugationreal_part_func
- method used when taking real partsimag_part_func
- method used when taking imaginary partsderivative_func
- method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.ttderivative_func
- method to be used for derivativespower_func
- method used when taking powers This method should take a keyword argument power_param specifying the exponentseries_func
- method used for series expansion This method should expect keyword arguments -order
- order for the expansion to be computed -var
- variable to expand w.r.t. -at
- expand at this valueprint_func
- method for custom printingprint_latex_func
- method for custom printing in latex mode
Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.
Note
The new function is both returned and automatically injected into the global namespace. If you use this function in library code, it is better to use sage.symbolic.function_factory.function, since it will not touch the global namespace.
EXAMPLES:
We create a formal function called supersin
sage: function('supersin') supersin
We can immediately use supersin in symbolic expressions:
sage: y, z, A = var('y z A') sage: supersin(y+z) + A^3 A^3 + supersin(y + z)
We can define other functions in terms of supersin:
sage: g(x,y) = supersin(x)^2 + sin(y/2) sage: g (x, y) |--> supersin(x)^2 + sin(1/2*y) sage: g.diff(y) (x, y) |--> 1/2*cos(1/2*y) sage: k = g.diff(x); k (x, y) |--> 2*supersin(x)*diff(supersin(x), x)
We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients:
sage: r, kappa = var('r,kappa') sage: psi = function('psi', nargs=1)(r); psi psi(r) sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g (r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2 sage: g.expand() 2*diff(psi(r), r)/r + diff(psi(r), r, r) sage: g.coefficient(psi.derivative(r,2)) 1 sage: g.coefficient(psi.derivative(r,1)) 2/r
Custom typesetting of symbolic functions in LaTeX, either using latex_name keyword:
sage: function('riemann', latex_name="\\mathcal{R}") riemann sage: latex(riemann(x)) \mathcal{R}\left(x\right)
or passing a custom callable function that returns a latex expression:
sage: mu,nu = var('mu,nu') sage: def my_latex_print(self, *args): return "\\psi_{%s}"%(', '.join(map(latex, args))) sage: function('psi', print_latex_func=my_latex_print) psi sage: latex(psi(mu,nu)) \psi_{\mu, \nu}
Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:
sage: def ev(self, x): return 2*x sage: foo = function("foo", nargs=1, eval_func=ev) sage: foo(x) 2*x sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5) sage: foo(x) 5 sage: def ef(self, x): pass sage: bar = function("bar", nargs=1, eval_func=ef) sage: bar(x) bar(x) sage: def evalf_f(self, x, parent=None, algorithm=None): return 6 sage: foo = function("foo", nargs=1, evalf_func=evalf_f) sage: foo(x) foo(x) sage: foo(x).n() 6 sage: foo = function("foo", nargs=1, conjugate_func=ev) sage: foo(x).conjugate() 2*x sage: def deriv(self, *args,**kwds): print("{} {}".format(args, kwds)); return args[kwds['diff_param']]^2 sage: foo = function("foo", nargs=2, derivative_func=deriv) sage: foo(x,y).derivative(y) (x, y) {'diff_param': 1} y^2 sage: def pow(self, x, power_param=None): print("{} {}".format(x, power_param)); return x*power_param sage: foo = function("foo", nargs=1, power_func=pow) sage: foo(y)^(x+y) y x + y (x + y)*y sage: from pprint import pformat sage: def expand(self, *args, **kwds): ....: print("{} {}".format(args, pformat(kwds))) ....: return sum(args[0]^i for i in range(kwds['order'])) sage: foo = function("foo", nargs=1, series_func=expand) sage: foo(y).series(y, 5) (y,) {'at': 0, 'options': 0, 'order': 5, 'var': y} y^4 + y^3 + y^2 + y + 1 sage: def my_print(self, *args): ....: return "my args are: " + ', '.join(map(repr, args)) sage: foo = function('t', nargs=2, print_func=my_print) sage: foo(x,y^z) my args are: x, y^z sage: latex(foo(x,y^z)) t\left(x, y^{z}\right) sage: foo = function('t', nargs=2, print_latex_func=my_print) sage: foo(x,y^z) t(x, y^z) sage: latex(foo(x,y^z)) my args are: x, y^z sage: foo = function('t', nargs=2, latex_name='foo') sage: latex(foo(x,y^z)) foo\left(x, y^{z}\right)
Chain rule:
sage: def print_args(self, *args, **kwds): print("args: {}".format(args)); print("kwds: {}".format(kwds)); return args[0] sage: foo = function('t', nargs=2, tderivative_func=print_args) sage: foo(x,x).derivative(x) args: (x, x) kwds: {'diff_param': x} x sage: foo = function('t', nargs=2, derivative_func=print_args) sage: foo(x,x).derivative(x) args: (x, x) kwds: {'diff_param': 0} args: (x, x) kwds: {'diff_param': 1} 2*x
Since Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:
sage: x = var('x') sage: f = function('f') sage: 2*f Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.symbolic.function_factory...NewSymbolicFunction'>'
You now need to evaluate the function in order to do the arithmetic:
sage: 2*f(x) 2*f(x)
Since Sage 4.0, you need to use
substitute_function()
to replace all occurrences of a function with another:sage: var('a, b') (a, b) sage: cr = function('cr') sage: f = cr(a) sage: g = f.diff(a).integral(b) sage: g b*diff(cr(a), a) sage: g.substitute_function(cr, cos) -b*sin(a) sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x)) b*(cos(a) - sin(a))
- class sage.symbolic.expression_conversions.ExpressionTreeWalker(ex)#
Bases:
sage.symbolic.expression_conversions.Converter
A class that walks the tree. Mainly for subclassing.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: from sage.symbolic.random_tests import random_expr sage: ex = sin(atan(0,hold=True)+hypergeometric((1,),(1,),x)) sage: s = ExpressionTreeWalker(ex) sage: bool(s() == ex) True sage: set_random_seed(0) # random_expr is unstable sage: foo = random_expr(20, nvars=2) sage: s = ExpressionTreeWalker(foo) sage: bool(s() == foo) True
- arithmetic(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: foo = function('foo') sage: f = x*foo(x) + pi/foo(x) sage: s = ExpressionTreeWalker(f) sage: bool(s.arithmetic(f, f.operator()) == f) True
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: foo = function('foo') sage: f = foo(atan2(0, 0, hold=True)) sage: s = ExpressionTreeWalker(f) sage: bool(s.composition(f, f.operator()) == f) True
- derivative(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: foo = function('foo') sage: f = foo(x).diff(x) sage: s = ExpressionTreeWalker(f) sage: bool(s.derivative(f, f.operator()) == f) True
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: f = SR(2) sage: s = ExpressionTreeWalker(f) sage: bool(s.pyobject(f, f.pyobject()) == f.pyobject()) True
- relation(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: foo = function('foo') sage: eq = foo(x) == x sage: s = ExpressionTreeWalker(eq) sage: s.relation(eq, eq.operator()) == eq True
- symbol(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: s = ExpressionTreeWalker(x) sage: bool(s.symbol(x) == x) True
- tuple(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker sage: foo = function('foo') sage: f = hypergeometric((1,2,3,),(x,),x) sage: s = ExpressionTreeWalker(f) sage: bool(s() == f) True
- class sage.symbolic.expression_conversions.FakeExpression(operands, operator)#
Bases:
object
Pynac represents \(x/y\) as \(xy^{-1}\). Often, tree-walkers would prefer to see divisions instead of multiplications and negative exponents. To allow for this (since Pynac internally doesn’t have division at all), there is a possibility to pass use_fake_div=True; this will rewrite an Expression into a mixture of Expression and FakeExpression nodes, where the FakeExpression nodes are used to represent divisions. These nodes are intended to act sufficiently like Expression nodes that tree-walkers won’t care about the difference.
- operands()#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression sage: import operator; x,y = var('x,y') sage: f = FakeExpression([x, y], operator.truediv) sage: f.operands() [x, y]
- operator()#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression sage: import operator; x,y = var('x,y') sage: f = FakeExpression([x, y], operator.truediv) sage: f.operator() <built-in function truediv>
- pyobject()#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression sage: import operator; x,y = var('x,y') sage: f = FakeExpression([x, y], operator.truediv) sage: f.pyobject() Traceback (most recent call last): ... TypeError: self must be a numeric expression
- class sage.symbolic.expression_conversions.FastCallableConverter(ex, etb)#
Bases:
sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FastCallableConverter sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x']) sage: f = FastCallableConverter(x+2, etb) sage: f.ex x + 2 sage: f.etb <sage.ext.fast_callable.ExpressionTreeBuilder object at 0x...> sage: f.use_fake_div True
- arithmetic(ex, operator)#
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x','y']) sage: var('x,y') (x, y) sage: (x+y)._fast_callable_(etb) add(v_0, v_1) sage: (-x)._fast_callable_(etb) neg(v_0) sage: (x+y+x^2)._fast_callable_(etb) add(add(ipow(v_0, 2), v_0), v_1)
- composition(ex, function)#
Given an ExpressionTreeBuilder, return an Expression representing this value.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x','y']) sage: x,y = var('x,y') sage: sin(sqrt(x+y))._fast_callable_(etb) sin(sqrt(add(v_0, v_1))) sage: arctan2(x,y)._fast_callable_(etb) {arctan2}(v_0, v_1)
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x']) sage: pi._fast_callable_(etb) pi sage: etb = ExpressionTreeBuilder(vars=['x'], domain=RDF) sage: pi._fast_callable_(etb) 3.141592653589793
- relation(ex, operator)#
EXAMPLES:
sage: ff = fast_callable(x == 2, vars=['x']) sage: ff(2) 0 sage: ff(4) 2 sage: ff = fast_callable(x < 2, vars=['x']) Traceback (most recent call last): ... NotImplementedError
- symbol(ex)#
Given an ExpressionTreeBuilder, return an Expression representing this value.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x','y']) sage: x, y, z = var('x,y,z') sage: x._fast_callable_(etb) v_0 sage: y._fast_callable_(etb) v_1 sage: z._fast_callable_(etb) Traceback (most recent call last): ... ValueError: Variable 'z' not found...
- tuple(ex)#
Given a symbolic tuple, return its elements as a Python list.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x']) sage: SR._force_pyobject((2, 3, x^2))._fast_callable_(etb) [2, 3, x^2]
- class sage.symbolic.expression_conversions.FriCASConverter#
Bases:
sage.symbolic.expression_conversions.InterfaceInit
Converts any expression to FriCAS.
EXAMPLES:
sage: var('x,y') (x, y) sage: f = exp(x^2) - arcsin(pi+x)/y sage: f._fricas_() # optional - fricas 2 x y %e - asin(x + %pi) ---------------------- y
- derivative(ex, operator)#
Convert the derivative of
self
in FriCAS.INPUT:
ex
– a symbolic expressionoperator
– operator
Note that
ex.operator() == operator
.EXAMPLES:
sage: var('x,y,z') (x, y, z) sage: f = function("F") sage: f(x)._fricas_() # optional - fricas F(x) sage: diff(f(x,y,z), x, z, x)._fricas_() # optional - fricas F (x,y,z) ,1,1,3
Check that trac ticket #25838 is fixed:
sage: var('x') x sage: F = function('F') sage: integrate(F(x), x, algorithm="fricas") # optional - fricas integral(F(x), x) sage: integrate(diff(F(x), x)*sin(F(x)), x, algorithm="fricas") # optional - fricas -cos(F(x))
Check that trac ticket #27310 is fixed:
sage: f = function("F") sage: var("y") y sage: ex = (diff(f(x,y), x, x, y)).subs(y=x+y); ex D[0, 0, 1](F)(x, x + y) sage: fricas(ex) # optional - fricas F (x,y + x) ,1,1,2
- pyobject(ex, obj)#
Return a string which, when evaluated by FriCAS, returns the object as an expression.
We explicitly add the coercion to the FriCAS domains \(Expression Integer\) and \(Expression Complex Integer\) to make sure that elements of the symbolic ring are translated to these. In particular, this is needed for integration, see trac ticket #28641 and trac ticket #28647.
EXAMPLES:
sage: 2._fricas_().domainOf() # optional - fricas PositiveInteger() sage: (-1/2)._fricas_().domainOf() # optional - fricas Fraction(Integer()) sage: SR(2)._fricas_().domainOf() # optional - fricas Expression(Integer()) sage: (sqrt(2))._fricas_().domainOf() # optional - fricas Expression(Integer()) sage: pi._fricas_().domainOf() # optional - fricas Pi() sage: asin(pi)._fricas_() # optional - fricas asin(%pi) sage: I._fricas_().domainOf() # optional - fricas Complex(Integer()) sage: SR(I)._fricas_().domainOf() # optional - fricas Expression(Complex(Integer())) sage: ex = (I+sqrt(2)+2) sage: ex._fricas_().domainOf() # optional - fricas Expression(Complex(Integer())) sage: ex._fricas_()^2 # optional - fricas +-+ (4 + 2 %i)\|2 + 5 + 4 %i sage: (ex^2)._fricas_() # optional - fricas +-+ (4 + 2 %i)\|2 + 5 + 4 %i
- symbol(ex)#
Convert the argument, which is a symbol, to FriCAS.
In this case, we do not return an \(Expression Integer\), because FriCAS frequently requires elements of domain \(Symbol\) or \(Variable\) as arguments, for example to \(integrate\). Moreover, FriCAS is able to do the conversion itself, whenever the argument should be interpreted as a symbolic expression.
EXAMPLES:
sage: x._fricas_().domainOf() # optional - fricas Variable(x) sage: (x^2)._fricas_().domainOf() # optional - fricas Expression(Integer()) sage: (2*x)._fricas_().integrate(x) # optional - fricas 2 x
- class sage.symbolic.expression_conversions.HoldRemover(ex, exclude=None)#
Bases:
sage.symbolic.expression_conversions.ExpressionTreeWalker
A class that walks the tree and evaluates every operator that is not in a given list of exceptions.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import HoldRemover sage: ex = sin(pi*cos(0, hold=True), hold=True); ex sin(pi*cos(0)) sage: h = HoldRemover(ex) sage: h() 0 sage: h = HoldRemover(ex, [sin]) sage: h() sin(pi) sage: h = HoldRemover(ex, [cos]) sage: h() sin(pi*cos(0)) sage: ex = atan2(0, 0, hold=True) + hypergeometric([1,2], [3,4], 0, hold=True) sage: h = HoldRemover(ex, [atan2]) sage: h() arctan2(0, 0) + 1 sage: h = HoldRemover(ex, [hypergeometric]) sage: h() NaN + hypergeometric((1, 2), (3, 4), 0)
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import HoldRemover sage: ex = sin(pi*cos(0, hold=True), hold=True); ex sin(pi*cos(0)) sage: h = HoldRemover(ex) sage: h() 0
- class sage.symbolic.expression_conversions.InterfaceInit(interface)#
Bases:
sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: a = pi + 2 sage: m(a) '(%pi)+(2)' sage: m(sin(a)) 'sin((%pi)+(2))' sage: m(exp(x^2) + pi + 2) '(%pi)+(exp((_SAGE_VAR_x)^(2)))+(2)'
- arithmetic(ex, operator)#
EXAMPLES:
sage: import operator sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: m.arithmetic(x+2, sage.symbolic.operators.add_vararg) '(_SAGE_VAR_x)+(2)'
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: m.composition(sin(x), sin) 'sin(_SAGE_VAR_x)' sage: m.composition(ceil(x), ceil) 'ceiling(_SAGE_VAR_x)' sage: m = InterfaceInit(mathematica) sage: m.composition(sin(x), sin) 'Sin[x]'
- derivative(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: f = function('f') sage: a = f(x).diff(x); a diff(f(x), x) sage: print(m.derivative(a, a.operator())) diff('f(_SAGE_VAR_x), _SAGE_VAR_x, 1) sage: b = f(x).diff(x, x) sage: print(m.derivative(b, b.operator())) diff('f(_SAGE_VAR_x), _SAGE_VAR_x, 2)
We can also convert expressions where the argument is not just a variable, but the result is an “at” expression using temporary variables:
sage: y = var('y') sage: t = (f(x*y).diff(x))/y sage: t D[0](f)(x*y) sage: m.derivative(t, t.operator()) "at(diff('f(_SAGE_VAR__symbol0), _SAGE_VAR__symbol0, 1), [_SAGE_VAR__symbol0 = (_SAGE_VAR_x)*(_SAGE_VAR_y)])"
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: ii = InterfaceInit(gp) sage: f = 2+SR(I) sage: ii.pyobject(f, f.pyobject()) 'I + 2' sage: ii.pyobject(SR(2), 2) '2' sage: ii.pyobject(pi, pi.pyobject()) 'Pi'
- relation(ex, operator)#
EXAMPLES:
sage: import operator sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: m.relation(x==3, operator.eq) '_SAGE_VAR_x = 3' sage: m.relation(x==3, operator.lt) '_SAGE_VAR_x < 3'
- symbol(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: m.symbol(x) '_SAGE_VAR_x' sage: f(x) = x sage: m.symbol(f) '_SAGE_VAR_x' sage: ii = InterfaceInit(gp) sage: ii.symbol(x) 'x' sage: g = InterfaceInit(giac) sage: g.symbol(x) 'sageVARx'
- tuple(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit sage: m = InterfaceInit(maxima) sage: t = SR._force_pyobject((3, 4, e^x)) sage: m.tuple(t) '[3,4,exp(_SAGE_VAR_x)]'
- class sage.symbolic.expression_conversions.LaurentPolynomialConverter(ex, base_ring=None, ring=None)#
Bases:
sage.symbolic.expression_conversions.PolynomialConverter
A converter from symbolic expressions to Laurent polynomials.
See
laurent_polynomial()
for details.
- class sage.symbolic.expression_conversions.PolynomialConverter(ex, base_ring=None, ring=None)#
Bases:
sage.symbolic.expression_conversions.Converter
A converter from symbolic expressions to polynomials.
See
polynomial()
for details.EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: x, y = var('x,y') sage: p = PolynomialConverter(x+y, base_ring=QQ) sage: p.base_ring Rational Field sage: p.ring Multivariate Polynomial Ring in x, y over Rational Field sage: p = PolynomialConverter(x, base_ring=QQ) sage: p.base_ring Rational Field sage: p.ring Univariate Polynomial Ring in x over Rational Field sage: p = PolynomialConverter(x, ring=QQ['x,y']) sage: p.base_ring Rational Field sage: p.ring Multivariate Polynomial Ring in x, y over Rational Field sage: p = PolynomialConverter(x+y, ring=QQ['x']) Traceback (most recent call last): ... TypeError: y is not a variable of Univariate Polynomial Ring in x over Rational Field
- arithmetic(ex, operator)#
EXAMPLES:
sage: import operator sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: x, y = var('x, y') sage: p = PolynomialConverter(x, base_ring=RR) sage: p.arithmetic(pi+e, operator.add) 5.85987448204884 sage: p.arithmetic(x^2, operator.pow) x^2 sage: p = PolynomialConverter(x+y, base_ring=RR) sage: p.arithmetic(x*y+y^2, operator.add) x*y + y^2 sage: p = PolynomialConverter(y^(3/2), ring=SR['x']) sage: p.arithmetic(y^(3/2), operator.pow) y^(3/2) sage: _.parent() Symbolic Ring
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: a = sin(2) sage: p = PolynomialConverter(a*x, base_ring=RR) sage: p.composition(a, a.operator()) 0.909297426825682
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: p = PolynomialConverter(x, base_ring=QQ) sage: f = SR(2) sage: p.pyobject(f, f.pyobject()) 2 sage: _.parent() Rational Field
- relation(ex, op)#
EXAMPLES:
sage: import operator sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: x, y = var('x, y') sage: p = PolynomialConverter(x, base_ring=RR) sage: p.relation(x==3, operator.eq) x - 3.00000000000000 sage: p.relation(x==3, operator.lt) Traceback (most recent call last): ... ValueError: Unable to represent as a polynomial sage: p = PolynomialConverter(x - y, base_ring=QQ) sage: p.relation(x^2 - y^3 + 1 == x^3, operator.eq) -x^3 - y^3 + x^2 + 1
- symbol(ex)#
Returns a variable in the polynomial ring.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter sage: p = PolynomialConverter(x, base_ring=QQ) sage: p.symbol(x) x sage: _.parent() Univariate Polynomial Ring in x over Rational Field sage: y = var('y') sage: p = PolynomialConverter(x*y, ring=SR['x']) sage: p.symbol(y) y
- class sage.symbolic.expression_conversions.RingConverter(R, subs_dict=None)#
Bases:
sage.symbolic.expression_conversions.Converter
A class to convert expressions to other rings.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter sage: R = RingConverter(RIF, subs_dict={x:2}) sage: R.ring Real Interval Field with 53 bits of precision sage: R.subs_dict {x: 2} sage: R(pi+e) 5.85987448204884? sage: loads(dumps(R)) <sage.symbolic.expression_conversions.RingConverter object at 0x...>
- arithmetic(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter sage: P.<z> = ZZ[] sage: R = RingConverter(P, subs_dict={x:z}) sage: a = 2*x^2 + x + 3 sage: R(a) 2*z^2 + z + 3
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter sage: R = RingConverter(RIF) sage: R(cos(2)) -0.4161468365471424?
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter sage: R = RingConverter(RIF) sage: R(SR(5/2)) 2.5000000000000000?
- symbol(ex)#
All symbols appearing in the expression must either appear in subs_dict or be convertible by the ring’s element constructor in order for the conversion to be successful.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter sage: R = RingConverter(RIF, subs_dict={x:2}) sage: R(x+pi) 5.141592653589794? sage: R = RingConverter(RIF) sage: R(x+pi) Traceback (most recent call last): ... TypeError: unable to simplify to a real interval approximation sage: R = RingConverter(QQ['x']) sage: R(x^2+x) x^2 + x sage: R(x^2+x).parent() Univariate Polynomial Ring in x over Rational Field
- class sage.symbolic.expression_conversions.SubstituteFunction(ex, *args)#
Bases:
sage.symbolic.expression_conversions.ExpressionTreeWalker
A class that walks the tree and replaces occurrences of a function with another.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction sage: foo = function('foo'); bar = function('bar') sage: s = SubstituteFunction(foo(x), {foo: bar}) sage: s(1/foo(foo(x)) + foo(2)) 1/bar(bar(x)) + bar(2)
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction sage: foo = function('foo'); bar = function('bar') sage: s = SubstituteFunction(foo(x), {foo: bar}) sage: f = foo(x) sage: s.composition(f, f.operator()) bar(x) sage: f = foo(foo(x)) sage: s.composition(f, f.operator()) bar(bar(x)) sage: f = sin(foo(x)) sage: s.composition(f, f.operator()) sin(bar(x)) sage: f = foo(sin(x)) sage: s.composition(f, f.operator()) bar(sin(x))
- derivative(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction sage: foo = function('foo'); bar = function('bar') sage: s = SubstituteFunction(foo(x), {foo: bar}) sage: f = foo(x).diff(x) sage: s.derivative(f, f.operator()) diff(bar(x), x)
- class sage.symbolic.expression_conversions.SympyConverter#
Bases:
sage.symbolic.expression_conversions.Converter
Converts any expression to SymPy.
EXAMPLES:
sage: import sympy sage: var('x,y') (x, y) sage: f = exp(x^2) - arcsin(pi+x)/y sage: f._sympy_() exp(x**2) - asin(x + pi)/y sage: _._sage_() -arcsin(pi + x)/y + e^(x^2) sage: sympy.sympify(x) # indirect doctest x
- arithmetic(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter sage: s = SympyConverter() sage: f = x + 2 sage: s.arithmetic(f, f.operator()) x + 2
- composition(ex, operator)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter sage: s = SympyConverter() sage: f = sin(2) sage: s.composition(f, f.operator()) sin(2) sage: type(_) sin sage: f = arcsin(2) sage: s.composition(f, f.operator()) asin(2)
- derivative(ex, operator)#
Convert the derivative of
self
in sympy.INPUT:
ex
– a symbolic expressionoperator
– operator
- pyobject(ex, obj)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter sage: s = SympyConverter() sage: f = SR(2) sage: s.pyobject(f, f.pyobject()) 2 sage: type(_) <class 'sympy.core.numbers.Integer'>
- relation(ex, op)#
EXAMPLES:
sage: import operator sage: from sage.symbolic.expression_conversions import SympyConverter sage: s = SympyConverter() sage: s.relation(x == 3, operator.eq) Eq(x, 3) sage: s.relation(pi < 3, operator.lt) pi < 3 sage: s.relation(x != pi, operator.ne) Ne(x, pi) sage: s.relation(x > 0, operator.gt) x > 0
- symbol(ex)#
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter sage: s = SympyConverter() sage: s.symbol(x) x sage: type(_) <class 'sympy.core.symbol.Symbol'>
- tuple(ex)#
Conversion of tuples.
EXAMPLES:
sage: t = SR._force_pyobject((3, 4, e^x)) sage: t._sympy_() (3, 4, e^x) sage: t = SR._force_pyobject((cos(x),)) sage: t._sympy_() (cos(x),)
- sage.symbolic.expression_conversions.algebraic(ex, field)#
Returns the symbolic expression ex as a element of the algebraic field field.
EXAMPLES:
sage: a = SR(5/6) sage: AA(a) 5/6 sage: type(AA(a)) <class 'sage.rings.qqbar.AlgebraicReal'> sage: QQbar(a) 5/6 sage: type(QQbar(a)) <class 'sage.rings.qqbar.AlgebraicNumber'> sage: QQbar(i) I sage: AA(golden_ratio) 1.618033988749895? sage: QQbar(golden_ratio) 1.618033988749895? sage: QQbar(sin(pi/3)) 0.866025403784439? sage: QQbar(sqrt(2) + sqrt(8)) 4.242640687119285? sage: AA(sqrt(2) ^ 4) == 4 True sage: AA(-golden_ratio) -1.618033988749895? sage: QQbar((2*SR(I))^(1/2)) 1 + 1*I sage: QQbar(e^(pi*I/3)) 0.50000000000000000? + 0.866025403784439?*I sage: AA(x*sin(0)) 0 sage: QQbar(x*sin(0)) 0
- sage.symbolic.expression_conversions.fast_callable(ex, etb)#
Given an ExpressionTreeBuilder etb, return an Expression representing the symbolic expression ex.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder sage: etb = ExpressionTreeBuilder(vars=['x','y']) sage: x,y = var('x,y') sage: f = y+2*x^2 sage: f._fast_callable_(etb) add(mul(ipow(v_0, 2), 2), v_1) sage: f = (2*x^3+2*x-1)/((x-2)*(x+1)) sage: f._fast_callable_(etb) div(add(add(mul(ipow(v_0, 3), 2), mul(v_0, 2)), -1), mul(add(v_0, 1), add(v_0, -2)))
- sage.symbolic.expression_conversions.laurent_polynomial(ex, base_ring=None, ring=None)#
Return a Laurent polynomial from the symbolic expression
ex
.INPUT:
ex
– a symbolic expressionbase_ring
,ring
– Either abase_ring
or a Laurent polynomialring
can be specified for the parent of result. If just abase_ring
is given, then the variables of thebase_ring
will be the variables of the expressionex
.
OUTPUT:
A Laurent polynomial.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import laurent_polynomial sage: f = x^2 + 2/x sage: laurent_polynomial(f, base_ring=QQ) 2*x^-1 + x^2 sage: _.parent() Univariate Laurent Polynomial Ring in x over Rational Field sage: laurent_polynomial(f, ring=LaurentPolynomialRing(QQ, 'x, y')) x^2 + 2*x^-1 sage: _.parent() Multivariate Laurent Polynomial Ring in x, y over Rational Field sage: x, y = var('x, y') sage: laurent_polynomial(x + 1/y^2, ring=LaurentPolynomialRing(QQ, 'x, y')) x + y^-2 sage: _.parent() Multivariate Laurent Polynomial Ring in x, y over Rational Field
- sage.symbolic.expression_conversions.polynomial(ex, base_ring=None, ring=None)#
Return a polynomial from the symbolic expression
ex
.INPUT:
ex
– a symbolic expressionbase_ring
,ring
– Either abase_ring
or a polynomialring
can be specified for the parent of result. If just abase_ring
is given, then the variables of thebase_ring
will be the variables of the expressionex
.
OUTPUT:
A polynomial.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import polynomial sage: f = x^2 + 2 sage: polynomial(f, base_ring=QQ) x^2 + 2 sage: _.parent() Univariate Polynomial Ring in x over Rational Field sage: polynomial(f, ring=QQ['x,y']) x^2 + 2 sage: _.parent() Multivariate Polynomial Ring in x, y over Rational Field sage: x, y = var('x, y') sage: polynomial(x + y^2, ring=QQ['x,y']) y^2 + x sage: _.parent() Multivariate Polynomial Ring in x, y over Rational Field sage: s,t = var('s,t') sage: expr = t^2-2*s*t+1 sage: expr.polynomial(None,ring=SR['t']) t^2 - 2*s*t + 1 sage: _.parent() Univariate Polynomial Ring in t over Symbolic Ring sage: polynomial(x*y, ring=SR['x']) y*x sage: polynomial(y - sqrt(x), ring=SR['y']) y - sqrt(x) sage: _.list() [-sqrt(x), 1]
The polynomials can have arbitrary (constant) coefficients so long as they coerce into the base ring:
sage: polynomial(2^sin(2)*x^2 + exp(3), base_ring=RR) 1.87813065119873*x^2 + 20.0855369231877