Elliptic curves#
- Elliptic curve constructor
EllipticCurveFactoryEllipticCurve_from_Weierstrass_polynomial()EllipticCurve_from_c4c6()EllipticCurve_from_cubic()EllipticCurve_from_j()EllipticCurves_with_good_reduction_outside_S()are_projectively_equivalent()chord_and_tangent()coefficients_from_Weierstrass_polynomial()coefficients_from_j()projective_point()tangent_at_smooth_point()
- Construct elliptic curves as Jacobians
- Points on elliptic curves
- Elliptic curves over a general ring
- Elliptic curves over a general field
- Elliptic curves over finite fields
- Formal groups of elliptic curves
Maps between them
- Elliptic-curve morphisms
- Isomorphisms between Weierstrass models of elliptic curves
- Isogenies
EllipticCurveIsogenycompute_codomain_formula()compute_codomain_kohel()compute_intermediate_curves()compute_isogeny_kernel_polynomial()compute_isogeny_starks()compute_sequence_of_maps()compute_vw_kohel_even_deg1()compute_vw_kohel_even_deg3()compute_vw_kohel_odd()fill_isogeny_matrix()isogeny_codomain_from_kernel()split_kernel_polynomial()two_torsion_part()unfill_isogeny_matrix()
- Îlu algorithm for elliptic-curve isogenies
- Composite morphisms of elliptic curves
- Isogenies of small prime degree
Fricke_module()Fricke_polynomial()Psi()Psi2()is_kernel_polynomial()isogenies_13_0()isogenies_13_1728()isogenies_2()isogenies_3()isogenies_5_0()isogenies_5_1728()isogenies_7_0()isogenies_7_1728()isogenies_prime_degree()isogenies_prime_degree_general()isogenies_prime_degree_genus_0()isogenies_prime_degree_genus_plus_0()isogenies_prime_degree_genus_plus_0_j0()isogenies_prime_degree_genus_plus_0_j1728()isogenies_sporadic_Q()
Elliptic curves over number fields#
- Elliptic curves over the rational numbers
- Tables of elliptic curves of given rank
- Elliptic curves over number fields
- Canonical heights for elliptic curves over number fields
- Saturation of Mordell-Weil groups of elliptic curves over number fields
- Torsion subgroups of elliptic curves over number fields (including \(\QQ\))
- Galois representations attached to elliptic curves
- Galois representations for elliptic curves over number fields
- Isogeny class of elliptic curves over number fields
- Tate-Shafarevich group
- Complex multiplication for elliptic curves
- Testing whether elliptic curves over number fields are \(\QQ\)-curves
The following relate to elliptic curves over local nonarchimedean fields.
Analytic properties over \(\CC\).
Modularity and \(L\)-series over \(\QQ\).
- Modular parametrization of elliptic curves over \(\QQ\)
- Modular symbols attached to elliptic curves over \(\QQ\)
- Modular symbols by numerical integration
- \(L\)-series for elliptic curves
- Heegner points on elliptic curves over the rational numbers
GaloisAutomorphismGaloisAutomorphismComplexConjugationGaloisAutomorphismQuadraticFormGaloisGroupHeegnerPointHeegnerPointOnEllipticCurveHeegnerPointOnX0NHeegnerPointsHeegnerPoints_levelHeegnerPoints_level_discHeegnerPoints_level_disc_condHeegnerQuatAlgHeegnerQuatAlgEmbeddingKolyvaginCohomologyClassKolyvaginCohomologyClassEnKolyvaginPointRingClassFieldclass_number()ell_heegner_discriminants()ell_heegner_discriminants_list()ell_heegner_point()heegner_index()heegner_index_bound()heegner_point()heegner_point_height()heegner_points()heegner_sha_an()is_inert()is_kolyvagin_conductor()is_ramified()is_split()kolyvagin_point()kolyvagin_reduction_data()make_monic()nearby_rational_poly()quadratic_order()satisfies_heegner_hypothesis()satisfies_weak_heegner_hypothesis()simplest_rational_poly()
- \(p\)-adic \(L\)-functions of elliptic curves
To be sorted#
Hyperelliptic curves#
- Hyperelliptic curve constructor
- Hyperelliptic curves over a general ring
- Hyperelliptic curves over a finite field
- Hyperelliptic curves over a \(p\)-adic field
- Hyperelliptic curves over the rationals
- Mestre’s algorithm
- Computation of Frobenius matrix on Monsky-Washnitzer cohomology
MonskyWashnitzerDifferentialMonskyWashnitzerDifferentialRingMonskyWashnitzerDifferentialRing_classSpecialCubicQuotientRingSpecialCubicQuotientRingElementSpecialHyperellipticQuotientElementSpecialHyperellipticQuotientRingSpecialHyperellipticQuotientRing_classadjusted_prec()frobenius_expansion_by_newton()frobenius_expansion_by_series()helper_matrix()lift()matrix_of_frobenius()matrix_of_frobenius_hyperelliptic()reduce_all()reduce_negative()reduce_positive()reduce_zero()transpose_list()
- Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve over a
- Jacobian of a general hyperelliptic curve
- Jacobian of a hyperelliptic curve of genus 2
- Rational point sets on a Jacobian
- Jacobian ‘morphism’ as a class in the Picard group
- Hyperelliptic curves of genus 2 over a general ring
- Compute invariants of quintics and sextics via ‘Ueberschiebung’
- Kummer surfaces over a general ring
- Conductor and reduction types for genus 2 curves