Ideals of Finite Algebras#
- class sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_ideal.FiniteDimensionalAlgebraIdeal(A, gens=None, given_by_matrix=False)#
Bases:
sage.rings.ideal.Ideal_generic
An ideal of a
FiniteDimensionalAlgebra
.INPUT:
A
– a finite-dimensional algebragens
– the generators of this idealgiven_by_matrix
– (default:False
) whether the basis matrix is given bygens
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.ideal(A([0,1])) Ideal (e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3
- basis_matrix()#
Return the echelonized matrix whose rows form a basis of
self
.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: I = A.ideal(A([1,1])) sage: I.basis_matrix() [1 0] [0 1]
- vector_space()#
Return
self
as a vector space.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: I = A.ideal(A([1,1])) sage: I.vector_space() Vector space of degree 2 and dimension 2 over Finite Field of size 3 Basis matrix: [1 0] [0 1]